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Preface
The genesis of this book was the pharmacoeconomics research and other
outcomes projects that my colleagues and I have completed for our pharma-
ceutical company and government clients over the years. The chapters’ ideas
came specifically from the Introduction to Pharmacoeconomics course that
I developed and currently teach for the Icahn School of Medicine at Mount
Sinai Master of Public Health Program. I have extensively collaborated with
many of the colleagues who have written chapters for this book and I am
truly grateful to them who, despite being extremely busy, have contributed
their valuable time and collective wisdom to make this book useful and prac-
tical. This book is meant to introduce the major concepts and principles of
pharmacoeconomics, with particular emphasis on modeling, methodologies,
and data sources and applications to real-world dilemmas. Readers will learn
about the use of pharmacoeconomics in drug reimbursement and pricing
internationally. Examples of pharmacoeconomic models used to support
these purposes in government, the pharmaceutical industry, and healthcare
settings are also given.

The first edition of this book focused on pharmacoeconomic analyses of
a public health vaccination program and collaboration among members of
the pharmaceutical industry, academia, and government in the development
of the human papillomavirus vaccine. In this second edition, we broaden the
focus to include more recent examples of published analyses and/or current
thinking about relevant issues, such as new chapters on multicriteria decision
analysis (MCDA), discretely integrated condition event (DICE) simulation,
global implementation of value frameworks, international experience in use
of pharmacoeconomics in drug reimbursement, and anticipated future devel-
opments in the field. In addition to cost, the book examines a full range of
ethical and moral issues, as well as overall public health and commercial
concerns that are often involved in decisions entailing pharmacoeconomic
decision-making. Unfortunately, this book was already in galleys when the
novel severe acute respiratory syndrome (SARS-CoV-2, also referred to as
Covid-19) became a global pandemic in 2020, so has been addressed only in
a few instances here and in a final small chapter. Suffice it to say, however, that
a multitude of issues described in the book are extremely relevant to the public
health and economic consequences being faced currently and for years to come.

Lest the reader think these issues esoteric or untimely, the reader is referred
to multiple articles both in the scientific literature and lay press (e.g., The
New York Times and Wall Street Journal) on comparative cost-effectiveness of
medications for pandemic diseases, such as the novel coronavirus-19, prevalent
diseases, such as hepatitis C and atopic eczema, and also for rare diseases
such as spinal muscular atrophy.

These principles are being embodied, for example, in the much-discussed
US Institute for Clinical and Economic Review (interestingly, the same
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acronym as an oft-used concept in pharmacoeconomics – the incremental
cost-effectiveness ratio, or ICER) evaluations and in guidances rendered
by the UK’s National Institute for Health and Care Excellence (NICE).
Pharmacogenomics, or the use of personalized medicine, will be combined
with cost-effectiveness analyses, to inform and improve healthcare decision-
making. Thus, improved and cost-effective decisions, using the best available,
evidence-based medicine, will require that both clinical and economic expertise,
as epitomized in this book, be used.

Renée J. G. Arnold, PharmD, RPh
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1.1 INTRODUCTION

Practitioners, patients, and health agencies face a multitude of conundrums as the
development of new therapies seems boundless; however, the funding for these
cures is limited. How does one decide which are the best medicines to use within
restricted budgets? The continuing impact of cost-containment is causing
administrators and policy makers in all health fields to closely examine the
costs and benefits of both proposed and existing interventions. It is increas-
ingly obvious that purchasers and public agencies are demanding that health
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treatments be evaluated in terms of clinical and humanistic outcomes against
the costs incurred.

Pharmacoeconomics is the field of study that evaluates the behavior or welfare
of individuals, firms, and markets relevant to the use of pharmaceutical products,
services, and programs [1]. The focus is frequently on the cost (inputs) and conse-
quences (outcomes) of that use. Of necessity, it addresses the clinical, economic,
and humanistic aspects of healthcare interventions in the prevention, diagnosis,
treatment, and management of disease. Pharmacoeconomics is a collection of
descriptive and analytic techniques for evaluating pharmaceutical interventions,
encompassing the spectrum of individual patients to the healthcare system
as a whole. Pharmacoeconomic techniques include cost-minimisation, cost-
effectiveness, cost–utility, cost–benefit, cost of illness, cost-consequence, and any
other economic analytic technique that provides valuable information to health-
care decision makers for the allocation of scarce resources. Pharmacoeconomics
is often referred to as “health economics” or “health outcomes research,” espe-
cially when it includes (a) comparison(s) with non-pharmaceutical therapy or
preventive strategies such as surgical interventions, medical devices, or screening
techniques.

Pharmacoeconomic tools are vitally important in analyzing the poten-
tial value for individual patients and the public. These methods supple-
ment the traditional marketplace value as measured by the prices that the
patient or patron is willing to pay. With government agencies and third
parties’ continuing concern about the higher expenditures for prescriptions,
pharmaceutical manufacturers and pharmacy managers are highly cogni-
zant that pharmaceutical interventions and services require comparative
cost-justification and continual surveillance to assure cost-effective out-
comes [2–5].

From pharmaceutical research, we have seen significant therapeutic
advances and breakthroughs. From healthcare delivery entrepreneurs, we
have seen numerous expanding roles for pharmacists, nurses, and physician
assistants, with services such as home intravenous therapy, drug-level
monitoring, parenteral nutrition management, hospice care, self-care coun-
seling, and genetic screening for customizing therapy, among other innov-
ations. The use of valid economic evaluation methods to measure the
value and impact of new interventions can increase acceptance and appro-
priate use of such programs by third-party payers, government agencies,
and consumers [2–5].

There is increasing scrutiny over all aspects of health care as we attempt
to balance limited finances and resources against optimal outcomes. Cost-
effectiveness evaluations of pharmaceutical options are becoming manda-
tory for attaining adequate reimbursement and payment for services [2–6].
Pharmacoeconomic methods document the costs and benefits of therapies
and pharmaceutical services and establish priorities for those options to
help in appropriately allocating resources in ever-changing healthcare land-
scapes and reimbursement environments/schema.
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1.2 ANALYTICAL PERSPECTIVES

Point of view is a vital consideration in pharmacoeconomics. If a medicine is pro-
viding a positive benefit in relation to cost in terms of value to society as a whole,
the service may not be valued in the same way by separate segments of society.
For example, a drug therapy that reduces the number of admissions or patient
days in an acute care institution is positive from society’s point of view but not
necessarily from that of the institution’s administrator, who depends on a high
number of patient admissions to meet expenses. Thus, one must determine whose
interests are being served when identifying outcome criteria for evaluation.
When considering pharmacoeconomic perspectives, one must always consider
who pays the costs and who receives the benefits. A favorable economic analysis
that showed savings in clinic utilization from the employer perspective would
probably not be viewed positively from the clinic’s budget perspective. More
broadly, what is viewed as saving money for society may be viewed differently
by private third-party payers, administrators, health providers, governmental
agencies, or even the individual patient. Historically, it has been suggested
among health economists that the societal perspective be discussed in an evalu-
ative report, even though the focus of the report might deal with other seg-
ments such as hospitals or insurance agencies. Recent articles, books, and
healthcare frameworks, however, discuss the importance of the individual
payer perspective as well [5, 7]. Indeed, although the societal perspective is
appropriate in single-payer countries, in the United States, with many different
healthcare delivery and payer approaches, this can be complicated, and ana-
lyses are often done from multiple perspectives to assist adjudication by
myriad stakeholders.

1.3 CODE OF ETHICS

The International Society for Pharmacoeconomics and Outcomes Research
(ISPOR) has published a code of ethics that is vital to the honesty and transpar-
ency of the discipline [8]. The code encourages pharmacoeconomists to maintain
the highest ethical standards because the organization recognizes that activities of
its members affect many constituencies. These include but are not limited to:
(1) patients, caregivers, and patients’ associations, who are ultimately going to
experience the greatest impact of the research; (2) healthcare professionals who
will be treating or not treating patients with therapies, medications, and proced-
ures made available or not made available because of the research; (3) healthcare
organizations; (4) decision makers and payers, including governments, employers,
and administrators, who must decide what is covered so as to optimize the health
of the patient and resource utilization; (5) professional outcomes researchers;
(6) industries/manufacturers, whose products are often the subject of this research;
(7) academic institutions where research is conducted and students are trained;
(8) colleagues, whose relationships in conducting research and related activities
are particularly critical; (9) research employees concerned about how they are
regarded, compensated, and treated by the researchers for whom they work;
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(10) students, whose respect and appropriate behavior are important; and (11)
clients for whom the research is conducted, and researcher relationships are
developed and maintained.

The ISPOR code of ethics lists many standards for researchers, but a (para-
phrased) sample section of the code related to “research design considerations,”
divided into primary and secondary concerns, is as follows:

1. Primary:
A. In terms of participant recruitment, researchers should provide

potential subjects information about study intentions, funding,
and Institutional Review Board (IRB)/Ethics Committee (EC)
rulings;

B. In terms of population and research setting, researchers should
describe and justify the chosen population;

C. Sample size and site selection should be adequate to meet the
study objectives and be statistically justified;

D. Safety and adverse event reporting should be followed, as
appropriate; and,

E. Any incentive/honorarium should be appropriate, vetted with
the IRB/EC, and not so large as to induce study participation.

2. Secondary:
A. When using secondary data sources, such as large administra-

tive datasets, ensure that intellectual property rights are
respected and referenced, with all permissions being secured;

B. Ensure reasonableness and transparency to minimize bias;
C. Appropriate statistical and other methods should be employed

and disclosed to ensure data completeness and validity, as well
as study result reproducibility 9;

D. In terms of transparency, consider study registration in clinical-
trials.gov or other appropriate source; and,

E. In terms of modeling studies that often make use of secondary
data, typically through incorporation into a decision-analytic
model, ensure that inputs are derived via a comprehensive review
of the literature, be transparent about assumptions, and employ
sensitivity analyses to examine the impact of assumptions and
data inputs on model outcomes.

1.4 OVERVIEW OF ECONOMIC EVALUATION METHODS

This section will give the reader a brief overview of the methodologies based on
the two core pharmacoeconomic approaches, namely cost-effectiveness analysis
(CEA) and cost–utility analysis (CUA). Table 1.1 provides a basic comparison of
the following methods: cost-of-illness, cost-minimisation, and cost–benefit ana-
lysis (CBA). One can differentiate between the various approaches according to
the units used to measure the inputs and outputs, as shown in the table. In gen-
eral, the outputs in CEA are related to various natural units of measure, such as
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lives saved, life years added, disability days prevented, blood pressure (change in
mmHg), lipid level, and so on. CBA uses monetary values (e.g., euros, dollars,
pounds, yen) to measure both inputs and outputs of the respective interventions.
Further discussion and examples of these techniques have been presented else-
where [9]. It is hoped that the evaluation mechanisms delineated further in
this book will be helpful in managing pharmaceutical interventions toward
improving societal value and generate greater acceptance by health author-
ities, administrators, and the public. The first edition of this book used the
human papillomavirus vaccine as an example for case studies. This has been
supplemented with additional examples outside of that narrow focus. Other
chapters in this book will further illustrate the various analytical methodolo-
gies related to CEA, CUA, CBA, etc. See Chapters 2, 4, 7, and 9 for more
information on these techniques.

1.5 QUALITY OF LIFE AND PATIENT PREFERENCES

Significant components in pharmacoeconomics are patient outcomes and quality
of life (QoL), with an expanding list of related factors to consider (Table 1.2)
[10–14]. Although it is recognized that there are physical, mental, and social
impairments associated with disease, there is not always consensus on how to
accurately measure many of these factors. Consequently, the concept of satisfac-
tion with care is often overlooked in cost-effectiveness studies and even during
the approval process of the U.S. Food and Drug Administration. Generally,
pharmacoeconomic and outcomes researchers consider QoL a vital factor in
creating a full model of survival and service improvement. QoL is related to
clinical outcomes as much as drugs, practitioners, settings, and types of disease.
The question becomes how to select and utilize the most appropriate instru-
ments for measuring QoL and satisfaction with care in a meaningful way.

The quality-adjusted life year (QALY) has become a major concept in
pharmacoeconomics. It is a measure of health improvement used in CUA,
which combines mortality and QoL gains and considers the outcome of a
treatment measured as the number of years of life saved, adjusted for quality.

One approach to conceptualizing QoL and outcomes data collected in clin-
ical trials is to consider the source of the data. There are several potential
sources of data to evaluate the safety and efficacy of a new drug. Potential
sources and examples are listed below:

Patient-reported outcomes (PROs) – e.g., global impression, functional status,
health-related QoL, symptoms (see Chapter 12 on PROmeasures)[15]

Caregiver-reported outcomes – e.g., dependency, functional status
Clinician-reported outcomes – e.g., global impressions, observations,

tests of function
Physiological outcomes – e.g., pulmonary function, blood glucose,

tumor size
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1.6 DECISION ANALYSIS AND MODELING

Decision analysis is defined as “. . . a systematic approach to decision making
under conditions of uncertainty.” Decision analysis, which is explored further
in Chapter 2, is an approach that is explicit, quantitative, and prescriptive [1,
16, 17].

It is explicit in that it forces the decision maker to separate the logical structure
into its component parts so that they can be analyzed individually, then recom-
bined systematically to suggest a decision. It is quantitative in that the decision
maker is compelled to be precise about values placed on outcomes. Finally, it is

TABLE 1.2

Outcomes and Quality of Life Measurement.

Approaches

I. Basic Outcomes List –- Six D’s

A. Death

B. Disease

C. Disability

D. Discomfort

E. Dissatisfaction

F. Dollars (Euros, Pounds, Yen)

II. Major Quality of Life Domains

A. Physical status and functional abilities

B. Psychological status and well-being

C. Social interactions

D. Economic status and factors

III. Expanded Outcomes List

A. Clinical End Points

1. Symptoms and Signs

2. Laboratory Values

3. Death

B. General Well-being

1. Pain/Discomfort

2. Energy/Fatigue

3. Health Perceptions

4. Opportunity (future)

5. Life Satisfaction

C. Satisfaction with Care/Providers

1. Access

2. Convenience

3. Financial Coverage

4. Quality

5. General

8 Pharmacoeconomics



prescriptive in that it aids in deciding what a person should do under a given set
of circumstances. The basic steps in decision analysis include identifying and
bounding the decision problem; structuring the decision problem over time; char-
acterizing the information needed to fill in the structure; and then choosing the
preferred course of action.

Pharmacoeconomic models can involve decision trees, spreadsheets, Markov
analyses, discrete event simulation, basic forecasting, multi-criteria decision
analysis, and many other approaches [9, 18]. See Chapters 4 and 9 for more
information.

In a simplified form, a decision tree can double as an educational tool for
presenting available therapeutic options and probable consequences to patients
and decision makers [9, 18]. Wennberg and colleagues have explored ways to
involve patients in a shared decision-making process [19, 20]. One of his pro-
jects involved a computer interactive program on prostate surgery education.
The program explains to patients the probability of success, the degree of pain
that might be encountered at each step, and what the procedure actually
entails. After viewing this program with visual graphic depictions of the sur-
gery, most patients changed their decisions about wanting surgery rather than
watchful waiting. This reduction in a major procedure resulted from a greater
focus on QoL and patient satisfaction. With further evaluation and perhaps
modification of the computer program, it should also produce more cost-
effective care. More recently, Wennberg and colleagues undertook a year-long
randomized investigation to compare the effects on patients who received a
usual level of support in making a medical treatment decision with the effects
on patients who received enhanced support, which included more contact with
trained health coaches through telephone, mail, e-mail, and the Internet. They
found that patients who received enhanced support had 5.3% lower overall
medical costs, 12.5% fewer hospital admissions and 9.9% fewer preference-
sensitive surgeries than patients who received the usual level of support. These
findings indicate that support for shared decision-making can generate savings.
Wennberg’s work is an application of outcomes research that helped to weigh
costs, utilities, and QoL for the patient and shows that shared decision-
making can generate savings as well as enhanced patient satisfaction.

1.7 RANKING PRIORITIES: DEVELOPING A FORMULARY LIST

Table 1.3 illustrates how cost–utility ratios can be used to rank alternative
therapies as one might do for a drug formulary (see Chapter 8 for more informa-
tion on Budget Impact Analysis). The numbers in the second column of the table
list the total QALYs for all of a decision maker’s patient population that is
expected to benefit from the treatment options in each row. The numbers in the
third column detail the total cost of treatment for all of one’s targeted patient
population for each treatment option in each row. For the next step in the
selection process, rank the therapy options by their cost–utility ratios. Options
have already been ranked appropriately in this table. For the final selection
step, add each therapy option into one’s formulary, moving down each row

Introduction to Pharmacoeconomics 9



until your allocated budget (using the cost column) is exhausted. In other
words, if you have only $420,000, you would be able to fund therapies A, B,
and C. These options have the best cost–utility for one’s population given
one’s available budget. Cost-effectiveness and cost–utility ratios are sometimes
presented in similar fashion and are called League Tables. Tengs et al. [21]
have published an extensive list of interventions, and Neumann and colleagues
[22] maintain a website with a substantial list of cost–utility ratios based on
health economic studies, with a sample in Table 1.4. These listings must be used
with caution because there are multiple criticisms of rankings with league tables,
including:

• Different reports use different methods
• What the comparators were (e.g., which drugs, which surgeries)
• Difficult to be flexible about future comparators
• Orphan and rare disease versus more prevalent diseases
• Randomized prospective trials versus retrospective studies
• Regional and international differences in clinical resource use
• Regional and international differences in direct and indirect costs of

treatment
• Statistical confidence intervals of cost and outcomes results
• Difficult to test statistical significance between the pharmacoeconomic

ratios of treatments listed

TABLE 1.3

Health Economic Selections* with Fixed Budget.

Therapy or Program QALYS1 Cost2($thousand)
Cost–Utility Ratio

($thousand)

A 50 100 2

B 50 200 4

C 20 120 6

D 25 200 8

E 10 120 12

F 5 80 16

G 10 180 18

H 10 220 22

I 15 450 30

1 Total Quality-Adjusted Life Years (QALYs) for all of patient population benefiting.
2 Total cost of treatment for all of targeted patient population.
* Selection procedure: first, rank therapies by cost–utility ratios, then add therapeutic options until
budget is exhausted.
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TABLE 1.4

Selected Cost–Utility Ratios from the CEA Registry.1

Intervention vs. Comparator in Target Population C/U (cost/QALY)
Ratio in 2017 US$

Naloxone distribution plus pre-exposure prophylaxis (PrEP) and linkage to
addiction treatment vs. Naloxone distribution plus linkage to addiction
treatment in 19 to 40 years, 41 to 64 years, ≥65 years Injection drug use, HIV-
negative patients in the US not on pre-exposure prophylaxis (PrEP)[36].

$99,000

Daclatasvir+Sofosbuvir vs. Standard/Usual Care- Sofosbuvir+Ribavirin in
Interferon-ineligible/intolerant adults with Hepatitis C Virus (genotype 3) in
the United Kingdom [37]

Cost saving

Haemophilus influenzae Type b (HiB) vaccination vs. None in Healthy
children in Thailand [38]

$35

American College of Cardiology/American Heart Association strategy vs.
Standard/Usual Care – Base case (status quo): current use of statin treatment
among adults 35 to 94 years old per NHANES 2007–2010 in healthy 41 to 64
years, ≥65 years in the US [39]

Cost saving

Polypill vs. Optimal guideline care for men aged 50–59/women aged 60–69
who were prescribed a statin and/or blood pressure lowering therapy with no
history of cardiovascular disease in the UK [40]

$11,000/18,000

Current investment (all currently implemented smoking cessation
interventions) vs. Zero investment (standard/usual care): only the top-level
policies (i.e. indoor smoking ban in public places and tobacco taxes; both at
their current levels) in adult smokers in Germany [41]

$370

Fulverstrant vs Standard/Usual Care- Generic aromatase inhibitor
anastrozole 1mg in postmenopausal women with estrogen receptor-positive
locally advanced or metastatic breast cancer whose disease progressed or
relapsed while on/after previous endocrine therapies in Sweden [42]

$39,000

Postpartum depression (PPD) screening and treatment vs. standard/usual care
in patients <65 years old with PPD and psychosis who have experienced one
birth in the past year.in the US [43]

$14,000

Combined exercise and bisphosphonates vs. bisphosphonates in fracture
prevention in women aged ≥65 years in the US [44]

$18,000–160,000

Transcatheter aortic valve replacement (TAVR) vs. standard/usual care in
surgical aortic valve replacement (SAVR) adults with severe stage aortic
stenosis in the US [45]

$62,091

Herpes zoster virus vaccine booster at 10 years vs. None in healthy patients
vaccinated with a single dose of herpes zoster virus vaccine (HZV) at age 60/
70/80 in the US [46]

$34,000–66,000

(Continued )
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Indeed, Kvizhinadze determined that age, discount rate employed, and choice
of cost-effectiveness threshold were factors for the maximum intervention cost
a society could invest in a life-saving intervention at different ages while remain-
ing cost-effective, with results varying from US$880,000 for an intervention to
save the life of a child, US$540,000 for a 50-year-old, and US$158,000 for an
80-year-old [23].

1.8 INCREMENTAL ANALYSIS AND QUADRANTS

Whether one is dealing with cost analyses or decision analysis, it is important to
properly compare one treatment with another, and one should understand the con-
cepts in incremental analysis. Incremental analysis does not mean that one is
adding a second therapy to the patient’s regimen, but it is a technique for compar-
ing one therapy with another. The basic incremental formulas are as follows:

CEA : Cost1 � Cost2ð Þ= Effectiveness1 � Effectiveness2ð Þ

or

CUA : Cost1 � Cost2ð Þ= QALYs1 �QALYs2ð Þ

An interesting way of displaying this information is illustrated in Figure 1.1. By
displaying this information in quadrants, one can more easily visualize the rela-
tionship between therapies. Drugs that are cheaper and more effective would fall
in the “accept” or “dominant” sector, while drugs that are more expensive and
less effective would be “dominated.” The slopes of the lines represent the incre-
mental cost–effectiveness ratios and, in general, therapies between $20,000 and
$100,000 per life year saved (or per QALY) are often considered acceptable in
public policy reports (see more about value frameworks in Chapter 15).

TABLE 1.4 (Cont.)

Intervention vs. Comparator in Target Population C/U (cost/QALY)
Ratio in 2017 US$

Biologic therapy (etanercept) combined with methotrexate first vs. standard/
usual care (first-line treatment with triple therapy of a combination of
conventional disease-modifying anti-rheumatic drugs (DMARDs)) adult
patients with active rheumatoid arthritis unresponsive to methotrexate
monotherapy in Canada [47]

$540,000

Source: With permission from Center for the Evaluation of Value and Risk in Health, The Cost-
Effectiveness Analysis Registry [Internet]. (Boston), Institute for Clinical Research and Health Policy
Studies, Tufts Medical Center. Available from: www.cearegistry.org. Accessed on January 20, 2019 [48].
1 With quality scores of 5 or above on a scale of 1 to 7.
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A classic paper involving incremental analysis deals with the comparison of
tissue plasminogen activator (TPA) to streptokinase [24]. In this study, the import-
ant question did not involve looking at the CEA ratio of each drug individually;
instead, it analyzed the incremental differences of the new drug, TPA, over the
standard therapy at the time. The analysis demonstrated that TPA, when com-
pared with streptokinase, had an incremental cost per life year saved of about
$40,000, which was considered a socially acceptable value.

1.9 FOURTH HURDLE AND DRUG APPROVALS

The classic basic elements required for approval of new drugs are (1) therapeutic
efficacy, (2) drug safety, and (3) product quality. But more recently, with the real-
ization of limited national and global financial resources, another drug approval
step has been added that considers factors related to pricing and reimbursement.
Therefore, in at least two dozen countries, there is an additional jump before the
marketing of pharmaceuticals that is often called “the fourth hurdle” [25]. This
criterion, usually involving cost-effectiveness and pharmacoeconomic analyses, is
required even when efficacy, safety, and quality have been demonstrated. Such a
fourth hurdle was initially introduced in Australia for the reimbursement of new
drugs and has been extended to multiple countries in Europe, Asia, and Latin
America. Despite the extra development costs to conduct these studies, and con-
cern from the pharmaceutical industry, the fourth step can also be viewed as a

Note: The center point is the comparison or standard therapy

Less Costly

Less Effectiveness

Interventions in this
quadrant are labeled as
“Abandon, Reject, or
Dominated”

More Costly

More Effectiveness

Slope = $100K Per QALY

Slope = $20K Per QALY

Interventions in this
quadrant are labeled as
“Encourage, Accept, or
Dominant”

FIGURE 1.1 Incremental ratios and quadrants. QALY=quality-adjusted life year.
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positive opportunity to better support more innovative medicines over me-too
drugs. Pharmacoeconomic analyses can provide quantitative evidence for more
rational new drug approvals. With post-marketing surveillance and patient regis-
tries, pharmacoeconomics should be able to help sustain cost-effective drug util-
ization throughout the life cycle of the therapy.

1.10 FROM BOARD ROOM TO BEDSIDE

Figure 1.2 provides a basic consult form that suggests a framework for pharmacoe-
conomic assessments. If a decision between alternative treatments needs to be
made, this form could help structure the calculations and considerations related to
pharmacoeconomics. With the current technology and resources in most facilities,
at an individual patient level, certainly, it would be impossible to have sufficient
time with each patient to individually apply detailed calculations. Evolving e-health
technologies and the Internet may facilitate patient applications in the future. This
consult worksheet is a basic template, then, for evaluating therapeutic options for
a drug formulary, framing a formal pharmacoeconomic study. In an ideal pharma-
coeconomic world, it could be used for a basic calculation sheet to be discussed
with a physician or patient and maintained in a patient’s medical record.

See Table 1.1 for definitions. Developed by McGhan, W.F. and Smith,
M.D. Reprinted with permission. Interactive version available through www.
healthstrategy.com

PHARMACOECONOMICS CONSULT :
BASIC CALCULATION SHEET

I. ID NUMBER:
II. TREATMENT OBJECTIVES :
III. PERSPECTIVE: Society Patient Payer Provider Hospital Other
IV. TYPE OF ANALYSIS:1 COI CMA CBA CEA CUA Other
V. TREATMENT OPTIONS: Treatment A Treatment B

Names of Treatment:
Disease/Symptom:
Major Outcome Measure:

VI. COST FACTORS Treatment A Treatment B Incremental
A. DIRECT COSTS: 

(HEALTH CARE RESOURCES)
Practitioner
Clinic/Hospital
Acquisition
Administration
Monitoring
Managing
ADRs
__________
__________

B. DIRECT COSTS: 
(NON-HEALTH CARE RESOURCES)

Transport
Telephone
__________
___________

FIGURE 1.2 Pharmacoeconomic consult template.
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Although a pharmacoeconomic analysis of a new treatment may indicate that
the intervention is cost-effective compared to existing therapy, the continued clin-
ical success of the new treatment is paramount [26]. The least cost-effective drug,
from an individual patient perspective, is the drug that does not work. Substan-
tially more research needs to be performed not only on future drugs in the pipe-
line but also on existing interventions in the marketplace so that we can
maximize patient outcomes and enhance cost-effectiveness. Computer technology
and the Internet are tremendous resources for disseminating and applying phar-
macoeconomic techniques, and then continually documenting outcomes for prac-
titioners and patients [2]. It is expected that reimbursement plans will include
more incentives (paying for performance or value-based outcomes – see Chapter

C. INDIRECT COSTS
Treatment A Treatment B Incremental

Morbidity Costs (time 
lost from work in 
dollars)
Mortality Costs (time 
lost from work in 
dollars)

D. INTANGIBLE 
COSTS

(difficult to put into 
dollars)

Discomfort/Pain
Emotional
QoL  Quality of

Life Index (as 
percentage of full 

health)

TOTAL COST

VII. MEASUREMENT CONSIDERATIONS
of effectiveness, benefit, or utility.

Unit of measurement
COI (direct and indirect costs of illness)
CMA ( input costs only, outcomes assumed equivalent)
CBA & NB ( input = $, outcomes all in dollars)
CEA ( input = $, outcomes in natural units, mmHg, etc.)
CUA ( input = $, outcomes in utilities, QALYs)
Other

VIII. CALCULATED RESULTS: Treatment A Treatment B Incremental
(Ratios are results of Outcomes divided by Inputs.)

COI (direct & indirect costs of illness)
CMA: (total direct & indirect costs)
CBA: (benefit over cost ratio)
NB:   (benefit minus cost)]
CEA: (cost over effectiveness ratio)
CUA: (cost over utility ratio)
Other:

1 See calculation formula Table 1 for definitions
Developed by McGhan WF and Smith MD. Reprinted with permission.
Interactive version available through www.healthstrategy.com

FIGURE 1.2 (Continued)
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15) for improvements in these economic, clinical, and humanistic outcomes [3,
27–33], although these schema may be difficult to implement. Nonetheless, phar-
macoeconomics reaches from the societal (macro) and board room level out to
the clinical and patient (micro) level, as envisioned in Figure 1.3.

Even health practitioners will be increasingly expected to allocate scarce
resources based on pharmacoeconomic principles. Using pharmacoeconomics
and disease management concepts, health providers can produce more cost-
effective outcomes in a number of ways [34]. For example:

• Decrease drug–drug and drug–lab interactions.
• Increase the percentage of patients in therapeutic control.
• Reduce the overall costs of the treatment by utilizing more efficient

modes of therapy.
• Reduce the unnecessary use of emergency rooms and medical facilities.
• Reduce the rate of hospitalization attributable to or affected by the

improper use of drugs.
• Contribute to better use of health manpower by utilizing automation,

telemedicine, and technicians.
• Decrease the incidence and intensity of iatrogenic disease, such as

adverse drug reactions.

By improved monitoring and assessment of drug therapy outcomes, practitioners
can provide early detection of therapy failure and provide cost-effective prescribing.

1.11 CONCLUSIONS

In this chapter, we provided a general introduction to pharmacoeconomics.
There are many reports in the literature that demonstrate that the benefit of

Clinical Decisions

Justify Clinical Service

Drug Use Guidelines

Formulary Management

Micro to Macro Applications with Pharmacoeconomics
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FIGURE 1.3 Micro to macro applications with Pharmacoeconomics.
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medicines is worth the cost to the payer(s) for numerous disease states. Still, it
must be realized that even though most research is positive, there is a need to
continue to develop interventions and services that maximize the benefit-to-
cost ratio to society. Even though new drugs can demonstrate positive ratios
of benefit to cost, society or agencies will ultimately invest their resources in
programs that have the higher benefit-to-cost or the best cost-to-utility ratio.
Similarly, the health system must be convinced that any new therapy is worth
utilizing, with a resultant modification or even deletion of other, less effective,
therapeutic options, if necessary. All sectors of society, and certainly the
pharmaceutical arena, must fully understand pharmacoeconomics if everyone
around the globe is to have optimal health care and a better future [2, 26, 35].
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2.1 INTRODUCTION

The fundamental purpose of a pharmacoeconomic model is to evaluate the
expected costs and outcomes of a decision (or a series of decisions) about the use
of a pharmacotherapy compared to one or many alternatives. Decision modeling
provides an excellent framework for developing estimates of these outcomes in
a flexible analytic framework that allows the investigator to test many alternative
assumptions and scenarios. In addition to providing an “answer” to a specific
pharmacoeconomic decision, one of the major advantages of having a model
of a particular decision is that the model can provide significant information

21



regarding how the answer changes with different basic assumptions or under
different conditions. It is this power to evaluate multiple “what if” scenarios
that provides a substantial amount of the power of pharmacoeconomic
modeling.

This chapter provides a brief introduction to the many methods of construct-
ing decision models for the purpose of pharmacoeconomic analyses. After
describing the basic methods of decision analysis, basic branch and node deci-
sion trees are described in the context of an actual pharmacoeconomic problem.
Many of the techniques used to make these models more clinically detailed and
realistic are detailed in other chapters in this book, and these chapters are refer-
enced where appropriate. In addition, a list of more detailed articles, books and
tutorials is provided at the end of the chapter for the reader who wishes to have
more detailed explanations of these techniques.

2.1.1 DECISION MODELING PARADIGM

The most important aspect of the decision modeling process is that it must rep-
resent the choice that is being made. When constructing a model of a clinical
or pharmacological decision, there is a series of characteristics of the actual
problem that must be represented in the model structure and method. First, the
model should represent the set of reasonable choices from which the decision
maker can choose. Leaving out reasonable potential or common strategies sub-
jects the model to criticisms of bias and selecting comparators that make the
superiority of a particular strategy more likely. Even if “doing nothing” is not a
viable clinical alternative, it is often useful to include such a strategy as a base-
line check of the model’s ability to predict the outcomes of the natural history
of untreated disease.

Once the strategies are outlined, the modeler must enumerate the possible
outcomes implied by each strategy. These outcomes are not always symmetric:
a surgical therapy may have an operative mortality, whereas a medical therapy
may not. However, all potential outcomes that can occur and are considered
relevant to clinicians taking care of the problem should be included. Pharma-
coeconomic models are characterized by their simultaneous assessment of the
clinical and cost consequences of various strategies, so even clinically insignifi-
cant outcomes that incur significant costs may need to be modeled. In order
to make an appropriate decision regarding what consequences and outcomes
to include, the modeler must make decisions regarding four characteristics: the
perspective of the analysis, the setting or context of the analysis, the appropri-
ate level of detail or granularity, and the appropriate time horizon [1].

Perspective: The perspective of the analysis (Table 2.1) determines from whose
point of view the decision is being made. Defining the perspective of the analysis
is especially important in pharmacoeconomic analyses because the costs that are
incurred depend heavily on the perspective. The most typical perspectives used in
pharmacoeconomic analyses are that of the payer (insurance companies, HMOs,
and Medicare), in which only those costs that are incurred by the payer are
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included; a provider (hospital, health system, and provider group), in which the
costs and reimbursements for providing a particular service are included; and
society, in which all costs and effects are included, irrespective of who has borne
them. A more detailed description of perspective is provided in standard texts [2]
and in multiple areas in this book. For example, an analysis conducted from the
payers’ perspective on a particular treatment for a neurological condition might
not take into account the differential effects of the various therapies being studied
on the patients’ ability to return to work, as these are not costs or benefits that
are borne by the payer. However, these costs and benefits should be included if
the analysis is being conducted from the perspective of society.

Setting: The setting defines the characteristics for which a particular decision is
being made. Just as any study design needs to define the population the study will
evaluate by inclusion and exclusion criteria in randomized controlled trials or by
case and control definition in many observational designs, a decision model must
explicitly state the type of patient(s) to which the decision will be applied. For
example, in developing a pharmacoeconomic model of the use of statins in hyper-
cholesterolemia, the modeler must decide the distribution of age, gender, lipid
levels, comorbid disease, and other variables that are important and must be repre-
sented in the model. A model that demonstrated a particular result in one group of
patients is not likely to have the same result in populations with different
characteristics.

Granularity: The correct amount of detail to include in a model of a given clinical
situation is one of the most difficult decisions a modeler must make in the devel-
opment of a representation of a particular decision and its consequences. Albert
Einstein once said: “things should be made as simple as possible . . . but not sim-
pler.” Although this concept is directly translatable to building decision models, it
provides little actual guidance: the clinical and pharmacoeconomic characteristics
of the problem dictate the level of detail required to represent the problem. For
example, in many analyses of medications, the modeler must represent side effects
of the medication. Should a model contain all of the individual potential side

TABLE 2.1

Characteristics of Potential Perspectives
Perspective Characteristics

Societal
Broadest perspective includes all costs and benefits, regardless of who bears
them. Considered the appropriate perspective for a reference case from the US
Panel (US Panel) on Cost Effectiveness in Health Care

Payer
Typical perspective for payment/coverage decisions. Now also included as a
secondary perspective by the US Panel.

Health Plan/HMO

Individual
Appropriate perspective for understanding optimal decisions or strategies for
individual patients or groups of patients
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effects and their likelihoods of occurring, or can they be grouped into side effects
of various severities such as mild (which might only be assumed to change the
quality of life of the patient and perhaps decrease medication adherence) and
major (which might be assumed to require some form of medical intervention)?
One of the best methods to decide the appropriate level of detail is to engage in
discussions and collaborations with clinicians who treat the particular condition in
question such that the areas of importance to them can be sufficiently detailed. The
model itself can sometimes be used to test whether more detail is necessary. Con-
ducting sensitivity analyses (see Chapter 13) on a particular aspect of the model
can indicate whether more detail is required. If multiple sensitivity analyses on the
parameters of a more aggregated or simplistic section of a model do not have
a significant impact on the results, it is not likely that expanding the detail of that
section of the model will provide new or important insights.

Time horizon: The time horizon indicates the period of time over which the spe-
cific strategies are chosen, and the relevant outcomes occur. This time frame is
generally determined by the biology of the particular problem. If an analysis is
being done comparing different treatments for acute dysuria in young women,
the time frame of the analysis may be as short as a week, as long-term sequelae
are extremely uncommon in this condition. In contrast, in an analysis of the
effects of various interventions to alter cardiovascular risk, the time frame might
very likely be the entire lifetime of the patient. It is important to remember that
the time frame does not include only those events directly related to the various
strategies, but all of the future events implied by choosing each strategy. If a par-
ticular intervention increases the risk of a life-changing complication (stroke,
heart attack, pulmonary embolism), the long-term effects of the complications
must be considered as well.

2.1.1.1 Types of Decision Modeling Techniques
There are many methodologies and modeling types that can be used to create and
evaluate decision models and the modeler should use the method most appropriate
to the particular problem being addressed. The choice is dependent upon the com-
plexity of the problem, the need to model outcomes over extended periods of time,
and whether or not resource constraints and interactions of various elements in the
model are required. We will describe in detail the development of simple branch
and node decision trees, which set the context for many of the other techniques.
A brief review of several methodologies is then provided; more detailed descriptions
of many of these techniques can be found in other chapters in this book.

2.1.1.2 Decision Trees
The classic decision analysis structure is the branch and node decision tree,
which is illustrated in Figure 2.1. The decision tree has several components that
are always present and need to be carefully developed. A decision model com-
prises the modeling structure itself (the decision tree), which represents the deci-
sion that is being made and the outcomes that can occur as the result of each
decision, the probabilities that the various outcomes will occur, and the values of
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the outcomes if they do occur. Similar to any other research problem, the deci-
sion tree should start with a specific problem formulation, which in the figure is
a choice between therapy A and therapy B in a particular condition. In pharma-
coeconomic models, these should represent the actual choice being made, and
should include the necessary descriptors of the population in which the decision
is being made to allow the reader to understand the context of the choice. The
context is followed by a decision node (represented in the figure as a square),
and should include as comparators the relevant, real choices the decision maker
has at his/her disposal. In the figure, this particular decision has only two choices
represented by the branches off the decision node labeled Choose Therapy A and
Choose Therapy B. Each choice is followed by a series of chance nodes (repre-
sented in the figure by circles), which describe the possible outcomes that are
implied by making each of the respective choices. Each outcome occurs with
a specific probability (p1 through p4 in the figure). Each outcome is also associ-
ated with one or more values (represented in the figure by the rectangles), which
describe the clinical effects and costs of arriving at that particular outcome.
We will use this figure in the following description of the basic steps that should
be conducted each time a decision analysis or pharmacoeconomic model is
developed.

2.1.1.2.1 Steps in Conducting a Decision Analysis
In the following sections, we describe the basic steps through which the mod-
eler should proceed in the construction of a model of a pharmacoeconomic

Choose
Therapy B

Choose
Therapy A

Outcome 1

Outcome 2

Outcome 3

Outcome 4

Utility 1 (U1)

Utility 2 (U2)

Utility 3 (U3)

Utility 4 (U4)

p1

p2

p3

p4

Cost 1 (C1)

Cost 2 (C2)

Cost 3 (C3)

Cost 4 (C4)

Specific choice 
between Therapy 
A and Therapy B 
in a particular 
condition

Decision Context Choices Outcomes Values 

Effects Costs 

FIGURE 2.1 Basic structure of a branch and node decision tree, illustrating two choices
in a particular clinical situation. After each choice is made, outcomes occur with specific
probabilities, these outcomes are associated with values, which may be measured in clin-
ical or cost metrics.
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decision. The basic question should be framed and the perspective chosen, the
structure of the problem should be developed, the probabilities and values for
the outcomes should be estimated, the tree should be analyzed to obtain the
expected value of the outcomes, and sensitivity analysis should be conducted
to evaluate the effect of assumptions on the results. These are not necessarily
linear: often evaluation of the tree or sensitivity analysis will indicate that
a particular part of the structure of the model needs either more or less detail.
Often several of these steps are cycled through many times during the develop-
ment of a model. We illustrate a specific example of these steps for the devel-
opment of a published pharmacoeconomic model for the use of low molecular
weight heparin (LMWH) as prophylaxis for thromboembolism in patients
with cancer (details given in Section 2.1.1.4).

2.1.1.2.2 Step 1: Frame the Question
As in any study design, the modeler must decide several basic details regard-
ing for whom the decision is being made and from whose perspective the deci-
sion is being made. Deciding for whom the decision is being made is similar
to the development of inclusion and exclusion criteria for a typical random-
ized controlled trial: the decision problem must specify exactly who would be
affected by the decision. The description should be as detailed as necessary to
describe the problem at hand, and should specify, if important, the age and
gender of the population being studied, the specific disease and comorbid con-
ditions that the patients may have, and the specific treatments or strategies
that are being evaluated.

Choosing the perspective of the decision maker is also very important, as it
determines the appropriate metric in which to measure the outcomes and
costs of the analysis. As described in Section 2.2, typical perspectives from
which to conduct analyses are society, the payer, or the patient.

2.1.1.2.3 Step 2: Structure the Clinical Problem
The structuring of the problem entails diagramming the branches and nodes that
represent the particular problem being modeled. There are several aspects of the
process that are important to remember. The first is that the choices one makes
from the decision node must be mutually exclusive: one and only one of the
choices (branches of the decision node) can be made. If there are several aspects
to the choice, then these aspects should be described as a series of mutually exclu-
sive options, rather than described as sequential or embedded decisions. This is
illustrated in Figure 2.2, which describes a decision to treat a particular cancer
with surgery, medical therapy, or both, and also investigates the order in which
the two therapies are applied. The structure on the top of the panel describes all
of the possibilities, but at a decision node, all of the decisions should be listed as
branches of the initial decision node itself, as in the bottom panel of the figure.
This allows for a comparison between all of the specific choices individually, and
allows for direct comparisons across each of the choices. However, the appropri-
ate construction for chance nodes is different. For example, Figure 2.3 describes
a portion of a model of a surgical therapy that has several possible outcomes; for
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example, the patient may die or have a major surgical complication, a minor sur-
gical publication, or no surgical complication. In the top panel of Figure 2.3 all
possible outcomes are drawn as branches of the root node. As shown, the prob-
abilities of each complication are indicated separately and the probabilities of all
four branches must sum to one. If this structure is used, it becomes somewhat

Medical
Therapy

Surgical
Therapy

Medical
Therapy

No 
Additional 
Treatment

Outcome

Surgical vs.
Medical therapy 

and order in  a 
particular cancer

Outcome

Surgical
Therapy

No 
Additional 
Treatment

Outcome

Outcome

Medical Therapy
Alone

Medical Therapy
followed by Surgery

Outcome

Outcome

Surgical Therapy
Followed by Medicine

Surgical Therapy
Alone

Outcome

Outcome

Surgical vs.
Medical therapy 

and order in  a 
particular cancer

FIGURE 2.2 Embedded decisions. It is very difficult to analyze trees with embedded or
sequential decisions, as drawn in the top panel. Each strategy should be its own choice,
as shown in the lower panel.
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complicated to conduct sensitivity analysis on the probability of surgical death or
major or minor surgical complications. However, if this same tree is drawn as
a series of binary chance nodes, as shown in the lower panel of Figure 2.3, sensi-
tivity analysis and the ability to vary prospective probabilities become easier. The
first chance node indicates whether the patient dies or survives. If the patient sur-
vives, they have a complication or not. If the patient has a complication, that
complication is either a major or a minor complication. In this setting, it is much

Major Surgical
Complication

Death

Outcome

Minor Surgical
Complication

No Surgical
Complication

Outcome

Outcome

Surgical therapy 
for a particular 

disease

Die at surgery

p1

p2
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Death
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Outcome
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Minor Surgical
Complication Outcome

p5

p6Survive

Complication

1–p1

p4

1–p4

FIGURE 2.3 Superiority of binary chance nodes. It is generally preferable to make com-
plex chance nodes a sequence of individual binary nodes (bottom panel) rather than
a complex multi-branch node (top panel).
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easier to directly model the relationships between complication rates, survival
rates, and normal outcomes.

It is important to remember that the structure drawn into a decision tree
represents the disease process, treatments, and outcomes that the modeler has
decided are important in this particular representation of the disease. Any par-
ticular model represents a specific version of the reality that the modeler is trying
to evaluate. The art of modeling is the ability to have the model, as created in
software, depict the version of reality that the modeler is hoping to represent.

2.1.1.2.4 Step 3: Estimate the Probabilities
Once the structure of the decision tree has been developed, the probabilities
must be estimated for the various chance nodes in the tree. There are several
sources that modelers can use to find and estimate probabilities for various
parameters in a decision model. It is important to understand that the typical
hierarchy of evidence-based grading does not necessarily apply to all of the various
parameters that are necessary to calibrate a decision analysis or a pharmacoeco-
nomic model. For example, the typical hierarchy for evidence-based medicine
ranks randomized, controlled trials as the best type of evidence for efficacy.
However, as mentioned in Chapter 5, retrospective database analysis, random-
ized, controlled trials are very poor at estimating many other types of the
parameters that are important in a decision model. For example, neither the
incidence of a particular disease can be estimated by a randomized, controlled
trial, nor can the complication rate of a particular therapy when it is applied in
general practice. Therefore, the quality of the evidence that a modeler uses to
calibrate a decision model is entirely dependent upon the type of data necessary
for a particular parameter in the model. Indeed, parameters on effectiveness of
therapy may well be best derived from the reports of randomized, controlled
trials or meta-analyses of randomized, controlled trials, whereas incidence and
prevalence data may best come from observational studies and large cohort or
administrative database analyses, and medication use data may best come from
claims databases maintained by large health insurance plans. The important
concept is that a model requires the best, unbiased estimates of the specific
parameters in the model: these parameters do not need to come from the same
source, nor do they all need to be of the same type of study or accuracy of data.
These sorts of differences can be investigated in sensitivity analyses.

2.1.1.2.5 Step 4: Estimate the Values of the Outcomes
Similar to estimating the probabilities of various events, the modeler needs to
assess the values for the outcomes that occur as a consequence of each one of the
choices. The appropriate outcome measure will have previously been determined
in the framing of the question when the perspective of the analysis is decided.
This will direct the modeler to choose the appropriate outcome measure for the
analysis. For example, in an analysis conducted from a societal point of view, the
appropriate outcome measure is usually QALYs (see Chapter 1: Introduction).
The choice of outcome is also determined by the particular disease that the treat-
ment is designed to ameliorate. For example, in a pharmacoeconomic model of
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a treatment for depression, it may be that the appropriate outcome measure is
depression-free days or a similar disease-related outcome metric. In a model of
a particular intervention for oral hygiene, the appropriate outcome might simply
be the number of cavities avoided. The outcomes used must be those that are clin-
ically relevant to the particular decision makers involved in the decision. One of
the advantages of developing a model of a pharmacoeconomic problem is that
clinical and cost outcomes may be evaluated and modeled simultaneously. There-
fore, in most economic models, the model will simultaneously account for the
clinical and cost consequences of each potential decision.

2.1.1.2.6 Step 5: Analyze the Tree (Average Out/Fold Back)
The evaluation of the decision tree is conceptually quite simple. The overall goal
is to calculate the expected value of the outcomes implied by choosing each
branch of the root decision node. For example, in Figure 2.1 there are two
choices: Therapy A and Therapy B. If Therapy A is chosen, a portion of the
population (indicated by p1) will experience Outcome 1, which has a utility U1

and another portion of the population (indicated by p2) will experience Out-
come 2, which has a utility U2. Assume the utilities represent life expectancies,
then the expected value of choosing Therapy A represents the life expectancy
of a cohort of people who would be given that therapy, p1 of them living U1

years, p2 of them living U2 years. Mathematically, the expected value of choos-
ing Therapy A is:

EðTherapyAÞ ¼ ðp1 � U1Þ þ ðp2 � U2Þ:

Similarly, the expected value of choosing Therapy B is:

EðTherapyBÞ ¼ ðp3 � U3Þ þ ðp4 � U4Þ:

The choice that has the highest expected value is then chosen as superior.
Essentially, no matter how complicated the tree becomes, the process of find-

ing the expected value is the same. Starting with the terminal nodes, each chance
node is replaced by the expectation of that chance node (the expected value of
the outcome at that chance node), and that process is continued until one is
left with the expected value of each branch of the initial decision node. Prag-
matically, a modeler never is required to do this calculation by hand; there are
several decision analysis software packages that do the analysis and calcula-
tions automatically.

2.1.1.2.7 Step 6: Test Assumptions (Sensitivity Analysis)
After the model has been developed, calibrated and the initial analyses com-
pleted, one of the most useful steps in modeling is conducting sensitivity analyses.
In its simplest form, the definition of sensitivity analysis is the evaluation of the
outcomes of the model for various different levels of one or more input variables.
Sensitivity analyses have several purposes. They can be used to “debug” a model
to make sure that the model behaves as it is designed to behave. It is often the
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case that the modeler and the content experts with whom the modeler has
developed a model will be able to predict the optimal choice under certain spe-
cified conditions. Similar to basic theoretical principles or knowledge of the
given disease process, the modeler may be able to make predictions about the
direction the value of a particular strategy should move under different
assumptions. For example, in a decision between surgical and medical therapy,
it seems obvious that the relative value of the medical therapy choice should
increase compared to the surgical therapy choice, as the mortality from sur-
gery increases. If a sensitivity analysis on surgical mortality is conducted and
the expected finding does not occur, this may indicate programming or struc-
tural errors in the development of the model.

Another important use of sensitivity analysis is in the determination of
which variables in the model have the most impact on the outcomes. This is
the traditional use of sensitivity analysis and is the basis for many initial valu-
ations of the stability of a particular decision modeling result over a wider
range of underlying assumptions and probabilities. There are many types of
sensitivity analyses, the simplest of which is a one-way sensitivity analysis in
which the changes in the outcomes are evaluated as the value of a single vari-
able is changed. Slightly more complicated is a two-way sensitivity analysis,
which plots the optimal choice implied with various combinations of two differ-
ent input variables, and a multi-way sensitivity analysis is conducted by changing
and evaluating the results across many input variables simultaneously. Finally,
probabilistic sensitivity analyses are used to test the stability of the results over
ranges of variability in the input parameters. We describe a simple sensitivity ana-
lysis from published work in Section 2.3.6. A more complete description of sensi-
tivity analysis in pharmacoeconomic analyses is provided in Chapter 13.

2.1.1.2.8 Step 7: Interpret the Results
Once the analysis has been completed, the stability of the model has been tested
with sensitivity analysis, and a modeler is convinced that the model represents the
clinical and pharmacoeconomic characteristics of the problem adequately, the
results must be interpreted and summarized. It is often the case that a specific
answer that the model gives under one particular set of conditions is not the most
important attribute of the model itself. Often times it is the manner in which the
answer varies with changes in underlying parameter estimates and underlying
probabilities and values for outcomes that are the most interesting aspect of the
interpretation of an analysis.

However, most pharmacoeconomic analyses will result in an estimate of a
cost-effectiveness ratio or similar metric of each choice as its major finding.

2.1.1.3 Markov Models
In a traditional branch and node decision tree, as illustrated in Figure 2.1, the
terminal nodes are all single outcomes. For example, the value of the outcome
might be measured as a life expectancy and quality-adjusted life expectancy or
a cost. However, for any model the outcomes that are expected to occur after
each choice are actually quite complex combinations of events that happen in
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the people’s lives proceeding down that path. Many times the intervention
being modeled at a decision node affects the risks of future events, such as
heart attacks and strokes in the case of cholesterol-modifying therapy, or
might affect the rate of recurrence of a particular event, such as asthma epi-
sodes in an analysis of the use of corticosteroids in patients with reactive
airway disease. When a model must consider events that occur over time or
events that may recur in time, the traditional branch and node structure is an
inefficient method for representing these events. Standard decision analytic
methods typically use a Markov process to represent events that occur over
time. As illustrated in the upper panel of Figure 2.4, a simple decision tree
would terminate in single values such as a life expectancy. However, that life
expectancy is actually determined by the average life histories of many people
who would proceed down that choice. This can be represented as seen in the
lower half of Figure 2.4 by replacing the single life expectancy value with a
Markov process that represents the events the modeler wants to detect that
occur after the decision is made and certain outcomes occur. A Markov pro-
cess is simply a mathematical representation of the health states in which a
patient might find himself or herself and the likelihood of transitioning
between those states. The Markov process itself, when it is evaluated, calcu-
lates the average life expectancy of a cohort proceeding through the Markov
process. Markov processes are described in much more detail in Chapter 4.
Discretely integrated condition event (DICE) simulation, a novel modeling
approach described in Chapter 10, transparently unifies the common model-
ing techniques, thus making it possible to create Survival Partition, Cohort
and Individual Markov as well as unconstrained Discrete Event Simulation
models in a single framework.

2.1.1.4 Simulation Models
Over the past 10–15 years, the decision analytic and pharmacoeconomic
investigators have started to rely more on simulation methodologies to create
progressively more complicated and clinically realistic models of disease pro-
cesses and treatments. Although a detailed exposition of these methods is
beyond the scope of this chapter, we will briefly describe the three most
common simulation methodologies used in current pharmacoeconomic ana-
lysis. They differ by their ability to model progressively more complicated
clinical situations and their ability to model interactions between individual
patients in the model.

2.1.1.4.1 Microsimulation
The term microsimulation has come to represent those models in which individ-
ual patients are modeled, one at a time, as they proceed through the model. The
advantage of microsimulation is that it eliminates a problem with standard
Markov process models in that it releases the assumption of path-independent
transition probabilities. Although this is discussed in more detail in Chapter 4,
the basic problem is that in standard Markov decision models, transition prob-
abilities are dependent only upon the state the patient is in: information regarding
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where the patient was in the prior time period is lost. Because only one patient is
in the model at any given time in a microsimulation, the patient’s specific history
can be recorded and transition probabilities can be made to depend on those
variables, allowing for remarkable clinical complexity in the development of a
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FIGURE 2.4 Use of Markov processes. The terminal node of a standard decision tree
typically represents life expectancy, which is a complex summary of many possible paths
and events. These can often be represented by a Markov process, in which the actual
events that occur over time are specifically modeled. The dots in the lower model repre-
sent the same health states and transitions as outcome 1 for outcomes 2 and 3. See text
and Chapter 4 for details on Markov processes.
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model. There are several examples of the use of microsimulation in the literature:
Freedberg has used microsimulation to evaluate the cost-effectiveness of various
treatment and prevention strategies in HIV disease [3]. Details of simulation
methodology can be found in several texts [4, 5].

2.1.1.4.2 Discrete Event Simulation
One of the problems with many of the modeling systems previously discussed is
that they cannot easily model the competition for resources. Therefore, although
a decision analysis or a cost-effectiveness analysis might be able to determine that
a particular diagnostic or therapeutic strategy should be adopted, these analyses
cannot tell whether the resources, delivery systems, geographic constraints, or
other problems allow for the optimal strategy to actually be implemented. Dis-
crete event simulation, which was originally developed over 50 years ago by
industrial engineering to model production processes in factories, provides the
modeler with a set of tools that can represent queues, resource limitations, geo-
graphic distribution, and many other physical structures or limitations that con-
strain the implementation of a particular strategy or therapy.

In health care, discrete event simulation has been used for many years to allow
for understanding flows and bottlenecks in operating room scheduling, emer-
gency vehicle distribution and response time, throughput in emergency rooms,
and many other resource constraint problems. More recently, as the ability to
blend highly detailed clinical data with discrete event simulation models has
improved, discrete event simulation has been used to address and evaluate more
clinically interesting problems. For example, we have used discrete event simula-
tion to model the US organ allocation process and evaluate the effects of vari-
ous organ allocation policy changes prior to their implementation [1, 6]. The
advantage of discrete event simulation, in this case, is that it has specific struc-
tures to allow for the formation of queues, waiting lists, and arrival of both
patients and donated organs.

2.1.1.4.3 Agent-Based Simulation
One of the purposes of making models more complex is to represent more realis-
tic physiological or biological systems. Many components of biological systems
act entirely independently and simply respond to their environments based on
internal sets of processes that govern their behavior. Cells respond to cytokines,
hormones and other biological signals, organs (the pancreas) respond to levels
of hormones (insulin) and a myriad of other factors and signals. Agent-based
models, in which each “agent” or component of the model independently con-
tains all of the information it needs to interact with and respond to the actions
of the other agents in the model, have been increasingly used to understand and
model complex biological systems, from individual cells and organs to popula-
tions. One fundamental concept of agent-based models is that the aggregated
behavior of multiple individual autonomous agents can replicate and predict
very complex social and group behaviors. In the realm of medicine and public
health, agent-based models have been used in the modeling of epidemics and
population reactions to epidemics [7–9].
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2.1.1.5 Deterministic (Mechanistic) Models
Deterministic models seek to capture and characterize specific biological relation-
ships and causes and effects directly through series’ of equations. Some of the
first medical problems to be evaluated using deterministic models were what are
termed “compartment models” that represented the spread of infectious diseases
in a community. Also called “susceptible, infected, recovered” (SIR) models, they
have been widely used over the past 50 years to model the effects of interventions,
such as quarantines and vaccines, on epidemic and pandemic infections. Basically,
the relevant population is divided into compartments, and the flows between
those compartments are represented as series’ of differential equations that are
related to both the level and rates of flow of each of the compartments.

More recently, these sorts of models have been used to model physiological
processes. At their highest level of abstraction, these models represent physiology
and disease as one might see in a physiology textbook, with diagrams that indi-
cate how one hormone or cytokine, or level of some electrolyte or other sub-
stance, affects the production and level of another. These typically form feedback
loops; examples might be that thyroid stimulating hormone (TSH) is produced in
response to low thyroid hormone levels and TSH acts on the thyroid to produce
more thyroid hormone. Examples of the application of deterministic modeling
to health care include the development of complex system models of sepsis and
injury [10–13]. More physiologically complex, and more directly applicable to
problems in pharmacoeconomics, the Archimedes model of disease uses a very
complex system of mathematical and differential equations in the concept of an
agent-based model to represent multiple metabolic processes and diseases that
include diabetes, heart disease, and some cancers [14, 15]. It has been used to
compare and evaluate the cost-effectiveness of different strategies for the pre-
vention of diabetes [16].

2.1.1.6 Summary of Modeling Types
There are a wide variety of mathematical modeling types available to the modeler
to represent disease, treatments, and costs, and a tradeoff exists between complexity
of the process being modeled and the type of model that should be used to repre-
sent the problem. In general, the simplest modeling technique that accurately repre-
sents the components of the problem according to a clinical expert is sufficient. It is
our experience that most problems can be addressed with either simple branch or
node decision trees or standard Markov process-based state transition models. In
the next section, we will illustrate the development and analysis of a simple branch
and node decision tree model to evaluate a clinical treatment problem.

2.1.2 EXAMPLE

To illustrate the 7 steps used to conduct a decision analysis, we will use an
analysis performed by Aujesky et al. [17] examining the use of low molecular
weight heparin (LMWH) as secondary prophylaxis for venous thromboembol-
ism in patients with cancer.
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2.1.2.1 Step 1: Framing the Question
Venous thromboembolism frequently occurs in patients with cancer and car-
ries a poor prognosis. In addition, cancer patients who have had an episode of
venous thromboembolism are prone to recurrent episodes. Because of this
recurrence risk, prolonged use of anticoagulants as secondary prophylaxis has
been advocated, typically for 6 months or longer. Data suggest that LMWH is
more effective than warfarin for this patient group, leading to recommenda-
tions for LMWH as first-line therapy in this clinical scenario. However, the
costs of LMWH and the potential need for home nursing to administer daily
subcutaneous injections raise questions about whether effectiveness gained
through LMWH use is worth its significantly increased cost.

Thus, the question this analysis seeks to answer is what the costs and benefits
of using LMWH are as compared to warfarin for secondary prophylaxis of
venous thromboembolic disease in cancer patients. In the base case analysis,
patient cohorts were 65 years old, based on the mean patient age in studies of
cancer-related venous thromboembolism. Since venous thromboembolism can
recur throughout the remaining life span of cancer patients, a lifetime time hori-
zon was chosen for the analysis. However, the life expectancy of cancer patients
with venous thromboembolism averages only 1–2 years due to venous thrombo-
embolism itself, the high prevalence of advanced cancer in patients with thrombo-
embolism, and the age of the patient group.

This analysis sought to inform physicians and policy makers about the
incremental value, defined broadly, of LMWH use compared to warfarin use.
For decisions framed in this fashion, cost and effectiveness metrics should be
as comprehensive and generalizable as possible. With this in mind, the analysis
took the societal perspective, where costs included both direct medical costs
and the costs of seeking and receiving care, and used life expectancy and qual-
ity-adjusted life expectancy as the effectiveness measures.

2.1.2.2 Step 2: Structuring the Clinical Problem
A decision tree model was chosen to depict this problem, based on the rela-
tively short time horizon of the model and the concentration on outcomes
related to venous thromboembolism and its treatment. If a longer time hori-
zon or more outcomes had been required to adequately model the problem,
another model structure, such as a Markov process, could have been used.
The decision tree model is shown in Figure 2.5. This model assumes that all
events that are not related to venous thromboembolism or its treatment are
unaffected by the choice between LMWH and warfarin.

In the decision tree, the square node on the left depicts the decision to use
either LMWH or warfarin. Circular nodes depict chance nodes, where events
occur based on their probabilities. All patients are at risk for early complications,
whose probabilities differ based on treatment choice. Patients who survive the
first 6 months after a venous thromboembolism episode are at risk for late com-
plications. The triangular nodes on the right represent the cost and effectiveness
values associated with that particular path through the model. In addition, the

36 Pharmacoeconomics



model assumes that patients suffering a hemorrhagic stroke had anticoagulation
permanently discontinued, with only transient interruption of anticoagulation
with noncerebral bleeding, and that a second venous thromboembolic episode
resulted in permanent inferior vena cava filter placement.

2.1.2.3 Step 3: Estimate the Probabilities
Probabilities for the model were obtained from a variety of sources. A large clinical
trial of cancer patients with venous thromboembolism provided data on mortality,
recurrent thromboembolism, and major bleeding associated with LMWH or war-
farin use [18]. Anticoagulation-related intracranial bleeding rates, which could not
be reliably estimated from single trials, were obtained from a meta-analysis of
venous thromboembolism therapy in a wide variety of patient groups [19]; its base
case value (9%) was varied over a broad range (5–30%) in sensitivity analyses to
account for the possibility of greater risk in cancer patients. Intracranial bleeding
risk was assumed to be the same with either anticoagulation regimen. In the model,
an estimated 20% of patients receiving LMWH required daily home nursing and
50% of patients with deep venous thrombosis received outpatient treatment.

2.1.2.4 Step 4: Estimate the Values of the Outcomes
Model outcomes were cost and effectiveness. US Medicare reimbursement data
were used to estimate costs for hospitalization, emergency department, physician
and home nursing visits, laboratory tests, and medical procedures. Anticoagulant
drug costs were average wholesale prices; base case daily pharmacy costs for
LMWH and warfarin averaged $48 and $1, respectively. Costs related to intra-
cranial bleeding and late complications were obtained from medical literature
sources. Since the analysis took the societal perspective, patient costs for
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FIGURE 2.5 Basic decision tree for LMWH as secondary prevention for cancer-
induced thromboembolism. Reproduced with permission.
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seeking and receiving care were incorporated into the analysis, including
patient transportation expenses for care visits and anticoagulation monitoring
and patient time costs related to continuing care needs.

Effectiveness was measured as life expectancy and quality-adjusted life
expectancy. Life expectancy was estimated using 6- and 12-month mortality
data from randomized trials of secondary venous thromboembolism prophy-
laxis in cancer patients [18, 20] and longer-term survival data from a cohort
study of cancer patients with venous thromboembolism [21]. Quality-adjusted
life expectancy was calculated by multiplying quality of life utility values (see
Chapter 12: Patient-Reported Outcomes) for chronic health states by the
length of time spent in those states. These utilities were obtained from the
medical literature. In addition, decreases in utility from acute complications
were accounted for by subtracting days of illness, based on US average hos-
pital length of stay data, from quality-adjusted life expectancy totals.

2.1.2.5 Step 5: Analyze the Tree
Averaging out and folding back the tree resulted in Table 2.2. The LMWH
strategy was more effective than warfarin, whether in terms of life expectancy
or quality-adjusted life expectancy, while also being nearly twice the cost of
the warfarin strategy. Effectiveness differences between strategies translated to
about 24 days in the unadjusted life expectancy analysis or about 19 quality-
adjusted days in quality-adjusted life expectancy. Two incremental cost-
effectiveness ratios resulted, since two effectiveness metrics were used, both of
which were more than $100,000 per effectiveness unit gained.

2.1.2.6 Step 6: Test Assumptions (Sensitivity Analysis)
In a series of one-way sensitivity analyses, varying parameter values over clinically
plausible ranges, individual variation of 11 parameters was found to change base
case results by 10% or more. These parameters and the incremental cost-
effectiveness ratios resulting from their variation are shown in Figure 2.6 as
a tornado diagram, where the range of incremental cost-effectiveness results
that occurred with variation of that parameter are shown as horizontal bars
arranged from the greatest range to the least. Results were most sensitive to
variation of parameters at the top of the figure: low values for early mortality

TABLE 2.2

Example Analysis Results
Low Molecular
Weight Heparin Warfarin Difference

Life expectancy, years 1.442 1.377 0.066

Quality-adjusted life expectancy, years 1.097 1.046 0.051

Total costs $15,239 $7,720 $7,609

Incremental cost-effectiveness ratio, $/life-year — — $115,847

Incremental cost-effectiveness ratio, $/QALY — — $149,865
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with warfarin or high values for early mortality with LMWH caused the
LMWH strategy to be dominated, that is, to cost more and be less effective than
the warfarin strategy. Variation of an individual parameter did not cause cost
per QALY gained for the LMWH strategy to fall below $50,000. However,
when simultaneously varying early mortality both due to LMWH and to war-
farin in a two-way sensitivity analysis, cost per QALY gained was <$50,000 if
mortality differences between the two agents were >8%. The LMWH strategy
cost <$100,000/QALY gained if the utility for warfarin was <0.93, daily phar-
macy cost for LMWH was <$41, or if the early mortality difference between
agents was >3%.

A probabilistic sensitivity analysis was also performed, where all sensitive
parameters were varied simultaneously over distributions 1000 times. In this
analysis, warfarin was favored in 97% of model iterations if the societal will-
ingness-to-pay threshold was $50,000/QALY, or in 72% when the threshold
was $100,000/QALY gained.

2.1.2.7 Step 7: Interpret the Results
The results of this analysis suggested that treatment with LMWH in cancer
patients with a history of venous thromboembolism was relatively expensive
when compared to warfarin therapy, with gains in effectiveness and decreased
costs resulting from fewer early complications with LMWH offset by its much
higher pharmacy costs. These results were relatively robust in sensitivity ana-
lyses when parameters were varied individually and collectively over clinically

FIGURE 2.6 Tornado diagram of multiple one-way sensitivity analyses of the important
variables in the LMWH example. Reproduced with permission.
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reasonable ranges. A key exception was when the cost of LMWH was varied;
this agent became more economically reasonable when its daily cost was in the
range of $40 or less. Interestingly, in many countries other than the United
States, LMWH costs are well below this range.

Thus, we can conclude that LMWH for secondary prophylaxis of venous
thromboembolism in US cancer patients is relatively expensive, calling into
question whether the documented improvement in outcomes is worth the
added cost. However, the added expense of the newer intervention is largely
driven by the cost of the agent itself, making LMWH a much more economic-
ally reasonable strategy when (and where) it costs less.
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3.1 INTRODUCTION

Cost-of-illness (COI) analysis [1–14] measures the economic burden of disease
and illness on society. It is often also called burden-of-illness (BOI) or burden-of-
disease (BOD) analysis. COI analyses may encompass multiple aspects of a dis-
ease’s impact on direct or indirect medical costs, influence on quality of life, and
as the basis for opportunity cost, that is, is the disease costly enough that monies
should be spent to ameliorate the condition or should the monies be better spent
elsewhere? [15–17] COI studies are, therefore, used to aid in policy making, for
example, resource allocation—that is, prioritizing resource use for disease treat-
ment and prevention—and as baseline research to determine the potential benefit
of new therapies. For example, governments may use COI research to estimate
the financial impact of a disease on public budgets and to determine if the cause
is worthwhile for the greater good, while pharmaceutical companies may deter-
mine if the societal burden is large enough to justify directing their research efforts
toward a disease’s treatment [15–17]. They are often used in conjunction with
other types of economic analyses, namely cost-effectiveness (Chapter 7) or budget-
ary impact analyses (Chapter 8), that are covered in later chapters in this book.

Costs can be divided into direct, indirect and intangible costs. Direct medical
costs are those related to providing medical services, such as a hospital stay,
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emergency department (ED) visits, physician fees for outpatient visits, rehabilitation
costs, home healthcare costs and drug costs (including the cost of the medication
itself and any downstream adverse events that may arise as a result of drug adminis-
tration). Direct nonmedical costs are those related to expenses, such as transporta-
tion costs, household expenditures, relocating, property losses and informal care
[16], that are a direct result of the illness and are required for direct interaction with
the healthcare system, but are not specifically healthcare related. Direct costs are
most frequently included in a COI study, whereas indirect costs, those associated
with changes of individual productivity, are often not included in a COI study,
because they are difficult to obtain. Examples of indirect costs are lost time from
work (absenteeism) and unpaid assistance from a family member. While absentee-
ism means that the person is not physically able to work at their job, presenteeism
means that although the person is physically present, they may not be functioning
to their fullest capacity due to the disease or treatment. An example of the latter
may be nausea due to chemotherapy or drowsiness due to antihistamine treat-
ment of allergies. In addition, intangible costs, such as pain and suffering, may
be included in the analysis. Analyses can be done from one or several perspec-
tives, which will help in determining the distribution of disease costs across
multiple stakeholders [16–18]. The societal perspective typically includes indir-
ect, as well as direct, medical costs because these are costs to society, that is, as
previously mentioned, lost time from work. The payer’s perspective typically
includes only direct costs (see Chapters 1 and 2 for more on perspective).

3.1.1 APPROACHES

There are two approaches to conducting COI analyses, the prevalence-based
approach and the incidence-based approach. The prevalence-based approach con-
siders the cost of disease within a specified time period. This approach is most
appropriate for diseases or illnesses that are measured within the time period of
analysis, usually 1–2 years, and that do not change much over time (e.g., migraine,
arrhythmia [2], heart failure [11]) or acute diseases (e.g., asthma [3], eczema [1, 5]).

This is in contrast to the incidence-based approach, which calculates the life-
time costs of disease from onset until cure or death. This approach is most appro-
priate for chronic diseases, such as hypertension, or diseases that take a long time
to progress, such as diabetes, because it considers disease progression and survival
probability. Such an approach may be particularly useful to determine how costs
vary over time and when therapies are targeted for specific stages of a disease
[17]. The disease is first defined using existing disease definitions or classification
systems, such as International Classification of Diseases–Ninth (ICD-9-CM) or
Tenth (ICD-10-CM) Revision codes. To accurately capture the disease COI over
the appropriate time frame, depending on the aforementioned approaches, one
must take into consideration the epidemiology of the disease under study and the
demographic profiles of the typical patient population.

There are three methods typically employed to calculate indirect costs—
human capital, friction cost and willingness to pay (WTP). The human capital
method values the individual’s productivity in society and estimates the hours
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of work lost by the person due to the disease and multiplies them by an
hourly wage; this method, therefore, takes the patient perspective. The human
capital method may be problematic for several reasons as follows:

• It is uncertain what figure to use for the hourly wage, although in the
United States often a figure from the Bureau of Labor Statistics is
used for average hourly wage.

• It may underestimate costs in the extremes of age (children/elderly) [17].
• It may overestimate costs in cases of long-term absence, disability or

premature death; in fact, it is the assumption that a worker cannot be
replaced even if the unemployment rate is significantly high that
results in this overestimation [16, 17].

Nonetheless, this is the method commonly employed. It may be operational-
ized using the Work Productivity and Activity Impairment (WPAI) question-
naire. The WPAI was created as a patient-reported quantitative assessment of
the amount of absenteeism, presenteeism and daily activity impairment attrib-
utable to general health (WPAI:GH) or a specific health problem (WPAI:
SHP). It is readily modifiable to address any health condition.

The friction cost method “estimates the value of human capital when another
person from the unemployment pool replaces the present value of a worker’s
future earnings until the sick or impaired worker returns or is eventually replaced
[16].” Thus, it is a function of the availability of labor. The friction cost is charac-
terized by the initial disruption costs plus training costs. It is viewed from the
employer’s perspective and may underestimate productivity costs.

The WTP method suggests that the avoidance of a disease can be estimated
from the amount people would be willing to pay to reduce the probability of
morbidity or mortality due to a disease [16, 17]. There are various ways to
determine and estimate an individual’s WTP such as conducting surveys,
examining the extra wages for highly risky jobs, and estimating the demand
for products that lead to a greater level of health or safety [16]. An example
of a WTP analysis might use the following scenario: suppose that in
a population of 100,000, a new heart failure medication is expected to result
in 1 fewer death per year from heart failure. You’ve elicited the fact that each
person in that population of 100,000 is willing to pay US$20 a year for the
reduction in mortality risks (maximum premium WTP). What is the implied
value of life? The equation for this is dV/dR, where dV = maximum premium
WTP and dR = risk reduction. We have reduced the annual risk of dying by
0.00001 (1/100,000). Thus, the implied value of life = US$20/.00001 = US-
$2,000,000 and the total WTP is US$2 million for an annual risk reduction
that can be expected in the statistical sense to save one life.

3.1.2 METHODS

A micro-costing method has been used in many studies to examine COI.
The direct costs included in this method typically comprise out-of-pocket
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expenses for noninsured items (over-the-counter medications, visits to out-of-
plan health practitioners, laundry/clothing and specialty items) and co-payments
for prescription medications and clinic visits determined from insurance claims
databases as well as the usual direct cost items previously outlined.

Several examples of COI studies, atopic dermatitis (AD), human papilloma-
virus (HPV), asthma and arrhythmia, will now be examined.

3.2 ATOPIC DERMATITIS

AD is a chronic disease that affects the skin of children and adults. It results
in itchy, flaky skin and demonstrates a considerable impact on patient quality
of life, as well as a substantial monetary burden [1, 9, 19–28]. Direct and
indirect costs for AD have been measured in various countries and are sub-
stantial from both patient and societal perspectives. The direct costs have been
reported to range from US$71 to US$2,559 per patient per year [29]. This
variation in cost is due to the differences in study methodology as well as dif-
ferences in healthcare systems of the various countries. Most of the costs
of AD consist of indirect costs associated with time lost from work, lifestyle
changes, and nontraditional or over-the-counter treatments for AD [29].
According to Drucker et al. [30], “a conservative estimate of the annual costs
of atopic dermatitis in the United States is US$5.297 billion (in 2015 US$)”.
The financial burden on the health care system and on society is expected to
grow because the prevalence of the disease is increasing.

Indeed, using a prevalence-based approach to calculate COI, studies have
demonstrated direct costs ranging from US$150 [21] (using the approximate
US$ equivalent in 2005) to US$580 [22] per patient per year, and even up to
US$19,462 [31], with differences varying due to different cost-accounting
methods and categories of costs included. Filanovsky et al. [32] recently calcu-
lated a mean monthly personal cost of AD in the month before an office visit
as US$274 (median US$114; IQR US$29, US$276), with US$75 from direct
costs (median US$45; IQR US$20, US$110) and US$199 from indirect costs
(median US$0; IQR US$0, US$208). Table 3.1 lists numerous references in
which US$ (or equivalent) per patient COI were calculated.

Typically, outpatient visits and medications compose the majority of direct costs
[9, 28], ranging from approximately 62% to >90% [9]. The distribution of AD-
associated direct costs from Fivenson et al. [9] is shown in Figure 3.1. In those stud-
ies that examined indirect costs (e.g., the patient out-of-pocket costs for co-pays,
medications, household items, loss of productivity), they made up substantial
percentages of the total, for example, 36% [23], 38% [30] or 73%, respectively [9].
Several studies showed increasing costs with worsening disease severity in adults.
Using a micro cost-accounting approach, whereby costs of hospitalizations, con-
sultations, drug therapy, treatment procedures, diagnostic tests, laboratory tests,
clinic visits and urgent care visits were summed, Fivenson, Arnold, and colleagues
(Table 3.2) reported an average annual per patient direct cost ranging from US$435
in mild patients to US$3,229 in severe patients. This association of higher costs
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among patients with greater disease severity was found in an analysis of patients
with commercial, Medicaid andMedicare insurance [31].

Indirect costs also increased by worsening disease severity—by more than
twofold [19, 27] to threefold [26] to as much as almost tenfold [9]. Similarly,
Ehlken et al. [21] showed a greater than twofold increase in total (both direct
and indirect) costs for patients with mild vs. severe disease.

3.2.1 THERAPY-SPECIFIC COST

Several studies have compared the cost of different uses of topical corticoster-
oids (TCS) vs. topical immunomodulators (i.e., pimecrolimus and tacrolimus)
and of the topical immunomodulators against each other. Some of these are
detailed in the following sections.

TABLE 3.1

Selected References of Cost of Illness of Atopic Dermatitis

Reference Year Direct Indirect Perspective (Payer) Total1

Ehlken [1] 2005 US$1502 US$1589 Societal US$1739

Ellis [2] 2002 US$580 Not measured Private insurer

Ellis [2] 2002 US$1250 Not measured Medicaid

Fivenson [3] 2002 US$167 US$147 Health plan US$609

Emerson [4] 2001 US$732 US$42 Societal US$115

Jenner [5] 2004 US$2812 Patient

Ricci [6] 2006 US$1540 Patient

Verboom [7] 2002 US$71 Country

1 If both direct and indirect available
2 US$ equivalent for 2005 calculated using www.gocurrency.com historic EU to US$ converter

[1] B. Ehlken, M. Mohrenschlager, B. Kugland, K. Berger, K. Quednau, J. Ring, [Cost-of-illness
study in patients suffering from atopic eczema in Germany], Hautarzt 56(12) (2005) 1144–51.

[2] C.N. Ellis, L.A. Drake, M.M. Prendergast, W. Abramovits, M. Boguniewicz, C.R. Daniel, M.
Lebwohl, S.R. Stevens, D.L. Whitaker-Worth, J.W. Cheng, K.B. Tong, Cost of atopic derma-
titis and eczema in the United States, J Am Acad Dermatol 46(3) (2002) 361–70.

[3] D. Fivenson, R.J. Arnold, D.J. Kaniecki, J.L. Cohen, F. Frech, A.Y. Finlay, The effect of atopic
dermatitis on total burden of illness and quality of life on adults and children in a large managed
care organization, J Manag Care Pharm 8(5) (2002) 333–42.

[4] R.M. Emerson, H.C. Williams, B.R. Allen, What is the cost of atopic dermatitis in preschool
children?, Br J Dermatol 144(3) (2001) 514–22.

[5] N. Jenner, J. Campbell, R. Marks, Morbidity and cost of atopic eczema in Australia, Australas J
Dermatol 45(1) (2004) 16–22.

[6] G. Ricci, B. Bendandi, L. Pagliara, A. Patrizi, M. Masi, Atopic dermatitis in Italian children:
Evaluation of its economic impact, J Pediatr Health Care 20(5) (2006) 311–15.

[7] P. Verboom, L. Hakkaart-Van, M. Sturkenboom, R. De Zeeuw, H. Menke, F. Rutten, The cost
of atopic dermatitis in the Netherlands: An international comparison, Br J Dermatol 147(4)
(2002) 716–24.
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3.2.1.1 Topical Corticosteroids
Green and colleagues undertook a systematic review of 10 RCTs in patients
with AD [24, 25]. Their literature search at the time revealed no published
studies of this nature. The authors noted a wide variation in price and product
availability, with the lowest price being generic hydrocortisone (£0.60 [approxi-
mately US$1.09]) to the highest at that time being mometasone furoate
(Elocon) of £4.88 (approximate US$8.80 equivalent).

Six of the RCT studies favored the once-daily option as the lowest-cost
treatment and four favored a twice-daily option, with successful outcome
being defined by overall response to treatment, relapse or flare-up rate, adverse
effects, compliance, tolerability, patient preference measures, and impact on
quality of life. One of the twice-daily-favored studies achieved a greater benefit
(number of successful treatment responders) at a greater cost. However, it was
felt that this greater cost would still likely be very cost-effective, given the rela-
tively low prices of TCS. The limitations noted in the review were those of
potentially low generalizability due to 80% of the RCTs referring to potent
TCS in patients with moderate-to-severe disease, whereas the majority of
patients with AD have mild disease and lack of information on quantity of
product usage.

3.2.1.2 Topical Immunomodulators
Clinical data show that topical immunomodulators are effective in AD, yet
do not cause the significant adverse effects associated with TCS [19]. Delea
et al. [20] retrospectively compared 157 pimecrolimus patients with 157
tacrolimus patients previously receiving TCS in a large claims database of
managed care patients in terms of resource utilization (concomitant medi-
cations) and AD-related follow-up costs. They used propensity matching to
control for differences between the groups in baseline demographic and

7%

63%

1%

25%

2%
1%

Inpatient
Outpatient

ER

Medications

Lab tests
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FIGURE 3.1 Distribution of atopic-dermatitis-associated direct costs in a US health plan.
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clinical characteristics and utilization of AD-related services prior to assess-
ment of disease severity. Patients in the pimecrolimus group had fewer
pharmacy claims for TCS (mean 1.37 vs. 2.04, P = 0.021); this occurred pri-
marily in the high-potency topical corticosteroid category. Fewer patients in
the pimecrolimus group also received antistaphylococcal antibiotics during the
follow-up period (16% vs. 27%, P = 0.014) and total AD-related costs during
this time were lower in this group than in the tacrolimus group (mean
US$263 vs. US$361, P = 0.012).

3.3 HUMAN PAPILLOMAVIRUS

Persistent infection with cancer-associated HPV (termed oncogenic or high-
risk HPV) causes the majority of squamous cell cervical cancer, the most
common type of cervical cancer, and its histologic precursor lesions, the
low-grade cervical dysplasia Cervical Intraepithelial Neoplasia-1 (CIN 1)
and the moderate-to-high-grade dysplasia CIN 2/3. Multiple HPV strains
cause varying degrees of invasive cervical cancer (ICC) and its CIN pre-
cursors. HPV strains 16 and 18 cause approximately 70% of all cervical
cancers [33, 34] CIN3, specifically, and 50% of CIN 2 cases. In addition,
HPV 16 and 18 cause approximately 35–50% of all CIN 1. Low-oncogenic
HPV risk types 6 and 11 account for 90% of genital wart cases [35]. Unfor-
tunately, cytological and histological examinations cannot reliably distinguish
between those patients who will progress from cervical dysplasia to ICC from
those whose dysplasias will regress spontaneously, the latter being the vast
majority of cases [36]. This inability to definitely ascertain the natural history
of HPV infection is one of the primary reasons for the dilemma with HPV
vaccination.

Although cervical cancer screening programs, such as the use of routine
screening via the Papanicolaou (Pap) cervical smear, have substantially
reduced the incidence and mortality of ICC in developed countries over the
past 50 years [35, 37], there has been a slowing of these declines in recent
years due to poor sensitivity of cervical cytology, anxiety and morbidity of
screening investigations, poor access to and attendance of screening programs,
falling screening coverage and poor predictive value for adenocarcinoma, an
increasingly common cause of ICC [37]. HPV is the most common sexually
transmitted disease in the United States and virtually 100% of cervical cancer
is due to HPV. HPV is also linked to head and neck cancer in men. There are
more than 100 HPV strains (thereby potentially reducing vaccine efficacy for
oncogenic strains not covered by the vaccine); HPV infection is often self-
limited. A mitigating factor for the argument against using the vaccine is the
fact that the cost-effectiveness of screening with Pap smears is reduced
(improves) from US$1 million/QALY if patients continue to be screened annu-
ally, as is the common current recommendation, to US$150,000/QALY if
patients are screened every 3 years, the latter a likely scenario if the vaccine is
used [33, 38–40].
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Worldwide, the incidence of cervical cancer is 570,000 new cases in 2018 [41]
and 266,000 deaths per year [42]; it is the fourth-leading cause of cancer deaths,
with 90% of these cases observed in developing countries [41]. Women in develop-
ing countries are especially vulnerable as they lack access to both cervical cancer
screening and treatment. The demographics of cervical cancer in the United
States show that 13,240 new cases of ICC were expected to be diagnosed in 2018
and about 4,170 deaths in women were expected from ICC [43]. The National
Cancer Institute estimates an annual incidence of new genital HPV infections of
14 million [44]. There are three vaccines currently available—Gardasil®, Gardasil
9® and Cervarix®—in the United States and Europe that cover the two major
oncogenic HPV strains (16 and 18) for cervical cancer. In addition, Gardasil
covers HPV strains 6 and 11, the primary causes of genital warts and Gardasil 9
covers five additional strains (31, 33, 45, 52 and 58). As of May 2017, Gardasil 9
is the only HPV vaccine available in the United States; the others are still avail-
able outside of the United States [44]. To significantly reduce the rate of cervical
cancer in the population as a whole, 70% of girls need to be vaccinated to achieve
what is called “herd immunity”—when the vaccine’s impact goes beyond just
people who are inoculated. The concept of herd immunity has been a “hot topic”
regarding the novel coronavirus pandemic, as well, since the more people have
contracted the disease and recovered, the fewer will be available to infect others.
So far, it is unknown if HPV strains will mutate as the vaccine is introduced,
although this is not very likely, seeing that HPV is a DNA-based virus [36].

Insinga et al. [45] used administrative and laboratory data from a large US
health plan to examine costs, resource utilization and annual health plan expend-
itures for cervical HPV-related disease. An episode of care was defined as begin-
ning with a routine cervical smear, that is, one that required no evidence of
follow-up for a previous Pap smear abnormality or ICD-9 diagnosis of a cervical
abnormality during the previous 9 months. If CIN or cancer was not detected
during an episode of care, biopsy results were termed false-positive. Because the
data source was a prepaid health plan without direct billing for procedures or
services, service-specific costs were assigned from the Medstat Marketscan data-
base (now IBM Marketscan) as a proxy for the health plan costs. Because of the
small number of cervical cancer cases in the data set, costs were assigned on an
age- and stage-specific basis using the Surveillance Epidemiology and End
Results Program (SEER; National Cancer Institute; US Department of Health
and Human Services, Bethesda, MD) database and an Agency for Healthcare
Research and Quality evidence report. All cost estimates were converted to 2002
US$ using the Medical Care component of the Consumer Price Index.

The authors found that episodes of care after an abnormal routine cervical
smear were US$732 on average, compared with US$57 for visits with negative
results, with a statistically significant trend toward higher costs with increasing
grade of initial cytologic abnormality. False-positive cervical smears cost
US$376 annually, while incomplete follow-up was US$79. Regardless of age
group, cervical HPV-related disease annual healthcare costs were US$26,415 per
1,000 enrollees, with the greatest costs of US$51,863 being observed in the 20- to
29-year-old age group. The largest cost contribution was that of routine screening
at 63.4% of total costs (range by age group of 54.1% to 70.8%), followed by cost
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of CIN 2/3, then cancer, false-positive smear, CIN 1 and incomplete follow-up
(see Figure 3.2) [45, 46].

Insinga and co-authors extrapolated their results to the general US population
to derive a total healthcare cost of US$3.4 billion for HPV-related disease in 1998,
with expenditures for routine screening accounting for US$2.1 billion, false-
positive Pap test US$300 million, CIN 1 US$150 million, CIN 2/3
US$450 million and ICC US$350 million in 2002 US$. A follow-up study by the
same authors estimated the annual direct costs of abnormal cervical findings and
treating cancer at US$3.5 billion in 2005 US$ [48]. Annual direct cost estimates in
2005 US$ have been as high as $4.6 billion [47] and adding in costs of anogenital
warts and other cancers associated with oncogenic HPV strains raises the total
estimated economic burden to as high as US$5 billion in 2006 US$ [45,46].

Chesson et al. [48] estimated an overall annual direct medical cost burden
of preventing and treating HPV-associated disease to be US$8.0 billion (2010
US$). Of this total cost, about US$6.6 billion (82.3%) was for routine cervical
cancer screening and follow-up, US$1.0 billion (12.0%) was for cancer (includ-
ing US$0.4 billion for cervical cancer and US$0.3 billion for oropharyngeal
cancer), US$0.3 billion (3.6%) was for genital warts and US$0.2 billion (2.1%)
was for recurrent respiratory papillomatosis.

Insinga and colleagues also estimated indirect costs, assuming that there
were 130,377 women who would have been alive during 2000 had they not
died from cervical cancer during that or a previous year, >75% of these
women died before age 60, with >25% dying prior to age 40, and that 37,594
(29%) of these women would have had labor force earnings during 2000.
Using these data, the total productivity loss in 2000 owing to cervical cancer
mortality was estimated at US$1.3 billion, several times higher than estimates
of the annual US direct medical costs of US$300 to US$400 million associated
with cervical cancer [49]. As in the AD studies, therefore, indirect costs are
thought to account for a much greater burden than direct costs of HPV [9].

63.4%

0.4%

9.1%

4.3%

12.8%

10.0%

Routine screening
Incomplete Follow-up
False-positive Smear
CIN 1
CIN 2/3
Cancer

FIGURE 3.2 Distribution of cervical HPV-related disease direct costs in a commercial
US health plan.
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3.4 ASTHMA

Asthma is a chronic disease with acute exacerbations (flare-ups), similar to the
epidemiology of AD. Although a minority of patients today with asthma experi-
ence disease-related ED visits and hospitalizations, these events continue to result
in significantly disproportionate use of healthcare resources and expenses [50].
Asthma guidelines recommend periodic assessment of impairment and risk fac-
tors to prevent exacerbations, which can lead to hospitalization, increased health-
care utilization and cost. Fractional exhaled nitric oxide (FeNO) testing assists in
the management of asthma by providing clinicians with an objective assessment
of underlying type 2 helper cells (Th2)/type 2 driven airway inflammation and
corresponding corticosteroid sensitivity. In addition, FeNO is one of the several
risk factors that has been shown to predict the likelihood of a future asthma
exacerbation [51, 52]. According to Cochrane meta-analysis data, FeNO moni-
toring is associated with a 40–50% reduction in the risk of exacerbations [53,
54]. Cost modeling indicated the potential for significant cost savings with
FeNO use [55] and, as such, Arnold et al [3] attempted to verify this potential
for cost savings within a real-world database of Medicare beneficiaries [3].
This retrospective observational study investigated asthma-related claims from
the Centers for Medicare and Medicaid Services (CMS)’ 5% Standard
Analytic Files (SAFs) from January 1, 2012 through December 31, 2015. The
CMS 5% SAFs contain every fully adjudicated Medicare claim filed for 5% of
the Medicare fee-for-service population. Medicare beneficiaries are randomly
selected by their beneficiary ID, which usually is a form of the social security
number. While the beneficiary ID is encrypted, it is consistent between all claims
in a year and across years, allowing for longitudinal analysis. A denominator file
provides demographic and coverage data about the beneficiaries in the data set.
These data include approximately 5 million claims annually, of which a large
majority is Carrier Part B claims for physician services. Arnold et al. chose those
patients who had a history of exacerbation so as to best study the potential
impact of the FeNO intervention since frequency of future exacerbation is best
determined by past history of exacerbation [51]. The moderate-to-severe exacer-
bator cohort was identified using guidelines from the American Thoracic Society
(ATS) addressing asthma clinical research and included beneficiaries who had at
least one inpatient (IP) hospitalization or ED visit with a primary diagnosis of
asthma (ICD-9-CM Dx 493.xx) in 2013 [56, 57]. The date of the first identified
asthma IP or ED visit was the index date.

Beneficiaries were included who had 2 years of records following an asthma-
related IP hospitalization or ED claim. All-cause and asthma-related healthcare
resource utilization and costs were assessed at baseline and during follow-up
periods. All-cause healthcare resource utilization and costs included all medical
encounters; asthma-related healthcare resource utilization and costs were limited
to medical encounters with a primary diagnosis of asthma. Costs were calcu-
lated as the sum of the amount paid by the health plan, the beneficiary and any
third-party payer. Costs were also reported as per patient per day. Index events
claims and costs were excluded from all pre-FeNO analyses. All costs were
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adjusted to 2016 US$ using the annual figure for the Medical Care Component
of the Consumer Price Index. A case-crossover analysis was completed of
asthma-related IP/ED events before and after FeNO use during the two-year
study period. Study design was of utmost importance when determining how
best to assess any influence of an intervention such as FeNO on asthma exacer-
bations. Indeed, the researchers stated that they considered using a case–cohort
analysis, but were concerned that there may be associated confounding/unmeas-
urable factors that would result in biases that would undermine the integrity of
the study. Because of the matched nature of a case-crossover study design, all
time-invariant confounders are automatically corrected for without having to
measure the confounders [58]. Case–control analyses are especially relevant in
cases such as this study where there was an acute “exposure” (FeNO) and an
outcome defined by an acute event (asthma exacerbation). Employing a similar
methodology, Sadatsafavi and colleagues found an increased 30-day risk of
asthma-related hospital readmission after an episode of asthma-related hospital-
ization. Interestingly, similar to Arnold and colleagues [3], where nonasthma-
related events (“All claims”) were less likely to be as highly statistically significant
than asthma-related events, there was no correlation of readmission after an
episode of hospitalization not related to asthma [59].

In the Arnold et al. study, 100 of the 5,911 asthma beneficiaries who met the
inclusion criteria within the database had a FeNO test during the two-year study
period. During the period before FeNO use, 98/101 (97%) beneficiaries had an
asthma-related IP/ED event compared to 46/101 (46%) during the FeNO period.
Asthma-related IP/ED claims and charges per beneficiary per day during the
period before FeNO were 0.004 and US$16.21 compared to 0.002 and US$6.46
during the FeNO period (p = 0.0433 and p = 0.0133, respectively). While
the analysis consistently demonstrated that, while asthma-related claims and
asthma-related ED/IP claims and charges per patient per day were statistically
significantly lower after FeNO use, this was not the case with all-cause claims,
where the opposite occurred, that is, that these figures were higher post-FeNO
than pre-FeNO. This make sense if one considers that it is the more difficult
asthma cases (in terms of place of treatment), regardless of comorbidities or
other reasons why beneficiaries would be hospitalized, that account for FeNO
use resulting in positive outcomes, hence the authors’ concentration on benefi-
ciaries with frequent moderate-to-severe exacerbations in the study.

Thus, the authors found that FeNO monitoring in beneficiaries with
a history of exacerbations was associated with a substantial reduction in
asthma-related IP/ED claims and charges.

3.5 ARRHYTHMIA

Arrhythmias, such as atrial fibrillation (AF), are often asymptomatic, yet are
associated with critical adverse outcomes, such as stroke. Moreover, survivors
of a stroke with AF have a high risk of recurrent stroke [60]. Their management
is expensive, with one source citing a cost of approximately US$26 billion asso-
ciated with AF [61]. Additionally, 25% of strokes are of unknown cause and
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subclinical AF is often suspected to be the cause under these circumstances
[61–63]. AF has been reported to be the most common type of arrhythmia and
the incidence and prevalence of AF are exhibiting a continuing upward trend
[64]. If an arrhythmia is suspected, Holter monitoring may be ordered. The
Holter monitor was first introduced into clinical practice in the 1960s and is
a type of ambulatory electrocardiogram (AECG) [61, 65–67]. It is used to moni-
tor ECG tracing continuously for a period of 24–48 hours after a patient
experiences an arrhythmia that is not observed during an in-office ECG [62,
64]. These types of events are often categorized as subclinical or asymptomatic.

Despite the popularity of this test, the diagnostic yield (i.e., the detection of
arrhythmias) may be low, varying from 1% to 22% in various case series
[67–70]. Indeed, the common belief (although not well documented) is that
repeat cardiac monitoring is frequent. Overall, the diagnostic sequence and its
associated costs for arrhythmia detection utilizing Holter ambulatory ECG
monitoring have not been studied to any extent. It was the authors’ goal,
then, to characterize the diagnosis, additional monitoring, clinical events and
sequelae of this detection system for arrhythmias. These were translated into
costs that occurred after an initial Holter monitor with a particular focus on
Medicare patients using the same type of Medicare SAFs indicated in the
asthma study. Arnold and colleagues executed a retrospective, longitudinal
claims analysis limited to 24- or 48-hour Holter patients with no prior
arrhythmia and who underwent a “new” Holter monitor [2]. Patients were
followed over time to identify related diagnoses, additional monitoring
events and related clinical events. The study period was defined for each
patient as the two-year window from the first Holter event reported in 2009.
Two years is a relevant time frame to identify related follow-up events;
a shorter time frame may undercount such events, while a longer study
period may identify fewer relevant events. Additionally, all monitoring codes
were used to capture follow-up monitoring events, including global and tech-
nical components, hook-up and interpretation. Repeat monitor events (by
AMA Current Procedural Terminology [CPT] code and date of service) must
have been billed more than seven days apart from another monitoring event
of the same type to limit the risk of double counting a single event. The
research studied years 2008 through 2011 in Medicare Fee-For-Service (FFS)
Carrier (Part B), Inpatient, Outpatient and Denominator files.

Patients were included in the evaluation if the beneficiary had an index
Holter in 2009 and enrolled in Medicare FFS Parts A and B in the 1 year
prior to the date of the first Holter to date of death or 2 years after the date
of the index Holter event in 2009. Exclusion criteria for a given beneficiary
included the use of a Holter or other cardiac monitoring device 1 year prior
to the purported date of the first Holter use event in 2009, diagnosis of AF
1 year prior to the date of the first Holter event in 2009, a cardiac ablation
procedure in the 1 year prior to the date of the first Holter event in 2009
(unless specified for supraventricular tachycardia, Wolff–Parkinson–White or
accessory bypass tract). To illustrate how these criteria worked, consider the
following example. A patient whose first Holter event occurred on February 1,
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2009 would be retrospectively evaluated over the period February 1, 2008
through January 31, 2009 for exclusion criteria. The follow-up period for ana-
lyses would cover February 1, 2009 through February 1, 2011.

There were 46,840 beneficiaries with an initial Holter performed in 2009.
After application of the exclusion criteria, the study cohort was reduced to
17,887 patients. Diagnosis was identified by appropriate ICD-9 codes and add-
itional ambulatory ECG monitoring by CPT codes and date of service. Clin-
ical events were identified through site of service and ICD-9 codes for ED, IP
and Observation (OBS) unit stays and ICD-9 codes for stroke, transient ische-
mic attack (TIA) and cardiac arrests. The principal diagnosis was used to
determine clinical events. Costs were derived from the claims data in the
Medicare SAFs. The diagnostic sequence of events (which was characterized
as the “Diagnostic Odyssey”) was used to group patients into one of the eight
possible outcome categories based on the occurrence of a clinical event, the
ability of the Holter monitoring to provide a diagnosis, the use of repeat
monitoring and the ultimate success in diagnosis and preventing clinical
events. The 17,887 patients in the study sample were classified into eight cat-
egories based on their diagnostic odyssey (Figure 3.3) and the numbers and
percentages tabulated. These were further subclassified into survival through
the study period (as described earlier). Finally, the cost of care for the eight
cohorts was determined from the Medicare SAF through the allowable charges
in that database. From the combination of the percentage of patients in each

FIGURE 3.3 Outcomes Categories: Decision Tree – “Diagnostic Odyssey”
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category and their corresponding charges, it was possible to extrapolate to the
general population of Holter monitor use. The study’s focus was on the group of
patients who, despite undergoing repeat cardiac monitoring, demonstrated no
diagnoses or clinical events (group 2a in Table 3.3).

Table 3.3 provides a summary of the patient counts and allowed charges
for the entire study period for the eight categories (“Diagnostic Odyssey”).

The 1,976 patients (11.1% of the total) in group 2a reflected the failure of
repeat Holter monitoring to either detect clinical events or diagnose disease.
In spite of this failure, there was a total allowed charge of more than
US$45 million or slightly more than US$23,000 per involved patient. When
extrapolated over the entire Medicare FFS population with the given study
criteria, this category was estimated to cost more than US$900 million over
the two-year study period.

Further examination of this group showed that Holter monitoring was the
most commonly repeated test during the 2 years of follow-up. When a repeat
test was performed, the majority of the time it occurred in the first 3 months
after the initial Holter test. Moreover, only one repeat test was typically per-
formed. This suggests that a large degree of effort, time and expense is spent on
a relatively large group of individuals for which no obvious discernible clinical
benefit is engendered. In agreement with Kuhne [70], the diagnostic yield of
Holter monitoring may not be as substantial as the prevailing clinical sentiment
suggests. As a consequence, Healey et al. [63] have pointed out that subclinical
outcomes such as tachyarrythmias have a significant association with the
increased risk of AF along with stroke and systemic embolism. In the current
study, it was noted that repeat monitoring, often of the same type as done ini-
tially, frequently did not yield a diagnosis and patients continued to experience
clinical events. Arnold and colleagues concluded that additional diagnostic
paradigms must be explored to improve these patient and system outcomes.

3.6 SUMMARY

In summary, COI or BOI lays the foundation on which the different types of
analyses that are used to make decisions in allocation of healthcare resources
are framed. As indirect costs, that is, productivity, often account for a sub-
stantial portion of the burden, these should be assessed as part of the COI
computation whenever possible. The major limitation of COI studies is that
they neither consider the effectiveness of treatment, nor the ease with which
that treatment may reduce the burden of disease on society or the individual.
Thus, these studies should be performed in conjunction with cost-effectiveness
analyses, whenever possible.
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4.1 INTRODUCTION

A pharmacoeconomic problem is tackled using a formal process that begins with
constructing a mathematical model. In this book a number of pharmacoeco-
nomic constructs are presented, ranging from spreadsheets to sophisticated
numerical approximations to continuous compartment models. For nearly 50
years, the decision tree has been the most common and simplest formalism, com-
prising choices, chances, and outcomes. As discussed in Chapter 2, the modeler
crafts a tree that represents near-term events within a population or cohort as
structure and attempts to balance realism and attendant complexity with simpli-
city. In problems that lead to long-term differences in outcome, the decision
model must have a definite time horizon, up to which the events are characterized
explicitly. At the horizon, the future health of a cohort must be summed and aver-
aged to “subsequent prognosis.” For problems involving quantity and quality of
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life, where the future natural history is well characterized, techniques such as
the declining exponential approximation of life expectancy [1, 2] or differential
equations may be used to generate outcome measures. Life tables may be used
directly or the results from clinical trials may be adopted to generate rele-
vant values. Costs in decision trees are generally aggregated, collapsing sub-
stantial intrinsic variation into single monetary estimates.

Most pharmacoeconomic problems are less amenable to these summarizing
techniques. In particular, clinical scenarios that involve a risk that is ongoing
over time, competing risks that occur at different rates, or costs that need to
be assessed incrementally lead to either rapidly branching decision trees or
unrealistic pruning of possible outcomes for the sake of simplicity. In these
cases, a more sophisticated mathematical model is employed to characterize
the natural history of the problem and its treatment. This chapter explores the
pharmacoeconomic modeling of cohorts using a relatively simple probabilistic
characterization of natural history that can substitute for the outcome node of
a decision tree. Beck and Pauker introduced the Markov process as a solution
for the natural history modeling problem in 1983, building on their and
others’ work with stochastic models over the previous six years [3]. During
the ensuing 36 years, over 2,000 articles have directly cited either this paper or
a tutorial published a decade later [4], and over 6,000 records in PubMed can
be retrieved using (Markov decision model) OR (Markov cost-effectiveness) as
a search criterion. This chapter will define the Markov process model by its
properties and illustrate its use in pharmacoeconomics by exploring a simpli-
fied example from the field of advanced prostate cancer [5].

4.2 THE MARKOV PROCESS AND TRANSITION PROBABILITIES

4.2.1 STOCHASTIC PROCESSES

A Markov process is a special type of stochastic model. A stochastic process
is a mathematical system that evolves over time with some element of uncer-
tainty. This contrasts with a deterministic system, in which the model and its
parameters specify the outcomes completely. The simplest example of
a stochastic process is coin flipping. If a fair coin is flipped a number of times
and a record of the result kept (H=“heads,” T=“tails”), a sequence such as
THHTTHHHTTHHHTHTHHTTHTTTTHTHH might arise. At each flip
(or trial), either T or H would result with equal probability of one-half. Dice
rolling is another example of this type of stochastic system, known as an inde-
pendent trial experiment. Each flip or roll is independent of all that have come
before, because dice and coins have no memory of prior results. Independent
trials have been studied and described for nearly three centuries [6].

4.2.2 MARKOV PROCESSES

The Markov process relaxes this assumption a bit. In a Markov model, the
probability of a trial outcome varies depending on the current result (generally
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known as a “state”). Andrei Andreevich Markov, a Russian mathematician,
originally characterized such processes in the first decade of the 20th century
[7]. It is easy to see how this model works via a simple example. Consider
a clerk who assigns case report forms to three reviewers: Larry, Maureen, and
Nell. The clerk assigns charts to these readers using a peculiar method. If the
last chart was given to Larry, the clerk assigns the current one to Larry with
probability one-quarter, and to Maureen or Nell with equal probability of
three-eighths. Maureen never gets two charts in a row; after Maureen, the clerk
assigns the next chart to Larry with probability one-quarter and Nell three-
quarters. After Nell gets a chart, the next chart goes to Larry with probability
one-half, and Nell and Maureen each one-quarter. Thus, the last assignment
(Larry, Maureen, or Nell) must be known to determine the probability of the
current assignment.

4.2.2.1 Transition Probabilities
Table 4.1 shows this behavior as a matrix of transition probabilities. Each cell
of Table 4.1 shows the probability of a chart being assigned to the reviewer
named as column head if the last chart was assigned to the reviewer named as
row head. An n×n matrix is a probability matrix if each row element is nonne-
gative and each row sums to 1. Since the row headings and column headings
refer to states of the process, Table 4.1 is a special form of probability matrix:
a transition probability matrix.

This stochastic model differs from independent trials because of the Markov
Property: the distribution of the probability of future states of a stochastic pro-
cess depends on the current state (and only on the current state, not the prior
natural history). That is, one does not need to know what has happened with
scheduling in the past, but only needs to know who was most recently assigned
a chart. For example, if Larry got the last review, the next one will be assigned to
any of the three readers with equal probability.

4.2.2.2 Working with a Transition Probability Matrix
The Markov property leads to some interesting results. What is the likelihood
that, if Maureen is assigned a patient chart, that Maureen will get the patient
chart after next? This can be calculated as follows:

TABLE 4.1

Chart Assignment Probability Table

Current Next

Larry Maureen Nell

Larry 0.250 0.375 0.375

Maureen 0.250 0.000 0.750

Nell 0.500 0.250 0.250
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After Maureen, the probability of Larry is one-quarter and Nell three-
quarters. After Larry, the probability of Maureen is three-eighths, and after Nell
it is one-quarter. So, the probability of Maureen–(anyone)–Maureen is (one-
quarter × three-eighths) + (three-quarters × one-quarter), or 0.281. A complete
table of probabilities at two assignments after a known one is shown in Table 4.2.
This table is obtained using matrix multiplication, treating Table 4.1 as a 3 × 3
matrix and multiplying it by itself.1 Note that the probability of Maureen going
to Maureen in two steps is found in the corresponding cell of Table 4.2.

This process can be continued because Table 4.2 is also a probability matrix,
in that the rows all sum to 1. In fact, after two more multiplications by Table
4.1, the matrix is represented by Table 4.3.

The probabilities in each row are converging, and by the seventh cycle, after
a known assignment, the probability matrix is shown in Table 4.4. This is also
a probability matrix, with all of the rows identical, and it has a straightforward
interpretation. Seven or more charts after a known assignment, the probability
that the next chart review would go to Larry is 0.353, to Maureen 0.235, and
to Nell 0.412. Or, if someone observes the clerk at any random time, the likeli-
hood of the next chart going to Larry is 0.353, and so on. This is the limiting
Markov matrix, or the steady state of the process. Over time Larry would be
issued 35.3% of the charts, Maureen fewer, and Nell somewhat more.

TABLE 4.2

Two-Step Markov Probabilities

Current Chart After Next

Larry Maureen Nell

Larry 0.344 0.188 0.469

Maureen 0.438 0.281 0.251

Nell 0.313 0.250 0.438

TABLE 4.3

Assignment Model After Four Cycles

Current After Four Cycles

Larry Maureen Nell

Larry 0.355 0.235 0.411

Maureen 0.352 0.237 0.411

Nell 0.352 0.235 0.413

1 Matrix multiplication can be reviewed in any elementary textbook of probability or finite mathemat-
ics, or at http://en.wikipedia.org/wiki/Matrix_multiplication.
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4.2.3 ABSORBING MARKOV MODELS

The chart review example is known as a regular Markov chain. The transition
probabilities are constant, and depend only on the state of the process. Any
state can be reached from any other state, although not necessarily in one step
(e.g., Maureen cannot be followed immediately by Maureen, but can in two or
more cycles). Regular chains converge to a limiting set of probabilities. The
other principal category of Markov models is absorbing. In these systems the
process has a state that is possible to enter, in a finite set of moves, from any
other state, but from which no movement is possible. Once the process enters
the absorbing state, it terminates (i.e., stays in that state forever). The analogy
with clinical decision models is obvious—an absorbing Markov model has
a state equivalent to death in the clinical problem.

4.2.3.1 Behavior of the Absorbing Model
This is shown in Figure 4.1, a simplified three-state absorbing clinical Markov
model. In a clinical model, the notion of time appears naturally. Assume that
a clinical process is modeled where definitive disease progression is possible and
that death often ensues from progressive disease. At any given month the patient
may be in a Well state, shown in the upper left of Figure 4.1, the Sick state in the
upper right, or Dead in the lower center. If in the Well state, the most likely result
for the patient is that he/she would remain well for the ensuing month and next
be still found in the Well state. Alternatively, the patient could become sick and
enter the Progressive state or die and move to the Dead state. If in Progressive,
the patient would most likely stay in that state, but could also die from the Pro-
gressive state, presumably at a higher probability than from the Well state. There
is also a very small probability of returning to the Well state.

A possible transition probability matrix for this model is shown in Table 4.5.
In the upper row, a Well patient remains so with probability 80%, has a 15%
chance of having progressive disease over one cycle, and a 5% chance of dying in
the cycle. A sick patient with progressive disease is shown with a 2% chance of
returning to the Well state, a 28% chance of dying in one month, and the remain-
der (i.e., 70% chance) staying in the Progressive state. Of course, the Dead state is
absorbing, reflected by a 100% chance of staying Dead.

Table 4.5 is a probability matrix, so it can be multiplied as in the prior
example. After two cycles, the matrix is shown in Table 4.6. Thus, after two

TABLE 4.4

Steady-State or Limiting Markov Matrix

Larry Maureen Nell

Larry 0.353 0.235 0.412

Maureen 0.353 0.235 0.412

Nell 0.353 0.235 0.412
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cycles of the Markov process, someone who started in the Well state has slightly
less than a two-thirds chance of staying well, and a 22.5% chance of having
Progressive disease. By the 10th cycle, the top row of the transition matrix is

So, someone starting well has a 75% chance of being dead within 10 cycles
and, of the remaining 25%, roughly an even chance of being well or having
Progressive disease. This matrix converges slowly because of the moderate

Well Sick

Dead

FIGURE 4.1 Simple Three-State Absorbing Markov Model.

TABLE 4.5

Transition Probability Matrix for Clinical Example

Current Next

Well Progressive Dead

Well 0.80 0.15 0.05

Progressive 0.02 0.70 0.28

Dead 0.00 0.00 1.00

TABLE 4.6

Two-Cycle State Matrix for Clinical Example

Well Progressive Dead

Well 0.643 0.225 0.132

Progressive 0.030 0.493 0.477

Dead 0.000 0.000 1.000

Well Progressive Dead

0.124 0.126 0.750
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probability of death in any one cycle, but eventually this matrix would end up
as a set of rows:

Everyone in this process eventually dies.
Clinical Markov models offer interesting insights into the natural history of

a process. If the top row of the transition matrix is taken at each cycle and
graphed, Figure 4.2 results. This graph can be interpreted as the fate of a cohort
of patients beginning together at Well. The membership of the Well state
decreases rapidly, as the forward transitions to Progressive and Dead overwhelm
the back transition from Progressive to Well. The Progressive state grows at first,
as it collects patients transitioning from Well, but soon the transitions to Dead,
which, of course, are permanent, cause the state to lose members. The Progressive
state peaks at Cycle 4, with 25.6% of the cohort. The Dead state actually is
a sigmoid (S-shaped) curve, rising moderately for a few cycles because most
people are Well, but as soon as the 28% mortality from the Progressive state
takes effect, the curve gets steeper. Finally, it flattens, as few people remain alive.
This graph is typical of absorbing Markov process models.

4.2.3.2 Use of Absorbing Markov Models in Clinical Decision Analysis
The Markov formalism can substitute for an outcome in a typical decision tree.
The simplest outcome structure is life expectancy. This has a natural expression
in a Markov cohort model: life expectancy is a summed experience of the
cohort over time. If we assign credit for being in a state at the end of a cycle, the
value of each state function in Figure 4.2 represents the probability of being
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FIGURE 4.2 Absorbing Markov chain natural history.
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alive in that state in that cycle. At the start of the process, all members of the
cohort are in the Well state. At Cycle One (Table 4.5), 80% are still Well and
15% have progressive disease, so the cohort would have experienced 0.8 average
cycles Well, and 0.15 cycles in Progressive disease. At Cycle Two (Table 4.6),
64.3% are Well and 22.5% have Progressive disease. Thus, after two cycles, the
cohort experience is 0.8 + 0.643, or 1.443 cycles Well and 0.15 + 0.225, or 0.375
cycles in Progressive disease. Summing the process over 45 cycles, until all are in
the Dead state, the results are 4.262 cycles Well and 2.630 cycles in Progressive.
So, the life expectancy of this cohort, transitioning according to the probability
matrix in Table 4.5, is 6.892 cycles, roughly 2:1 in Well versus Progressive dis-
ease. Refinements to this approach, involving correction for initial state mem-
bership, can be found in Sonnenberg and Beck [4].

Whereas a traditional outcome node is assigned a value, or in Chapters 2, 7, 8,
10, and 12, a utility, the Markov model is used to calculate the value by summing
adjusted cohort membership. For this to work, each Markov state is assigned an
incremental utility for being in that state for one model cycle. In the example
above, the Well state might be given a value of 1, the Progressive state a value of
0.7. That is, the utility for being in the Progressive state is 70% of the value of the
Well state for each cycle in it. In most models Dead is worth 0. Incremental costs
can also be applied for Markov cost-effectiveness or cost-utility analysis. For this
tutorial example, assume the costs of being in the Well state are $5,000 per cycle,
and in the Progressive state $8,000 per cycle. Summing the cohort over 45 cycles
leads to the results in Table 4.7. In the second column, the overall cost in the Well
state is calculated as 4.262 × $5,000, or $21,311. At $8,000 per cycle in the Pro-
gressive state the total cost in this state is $21,043. Thus, in this tutorial example,
the cohort can expect to survive 6.892 cycles, or 6.103 quality-adjusted cycles, for
a total cost of over $42,000. These values would substitute for the outcomes at
the terminal node of a decision tree model, and could be used for decision or
cost-utility analysis.

An alternative way to use a Markov model is to simulate the behavior of
a cohort of patients, one at a time. This approach is known as a Monte Carlo
analysis. Each patient begins in the starting state (Well, in this example) and, at
the end of each cycle, the patient is randomly allocated to a new state based on
the transition probability matrix. Life expectancy and quality adjustments are

TABLE 4.7

Markov Cohort Costs and Expected Utilities

Well (Q = 1.0) Progressive (Q = 0.7) Total

Expected cycles 4.262 2.630 6.892

Quality-adjusted 4.262 1.841 6.103

Cost/cycle $5,000 $8,000

Total costs $21,311 $21,043 $42,354
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handled as in the cohort solution. When the patient enters the Dead state, the
simulation terminates and a new patient is queued. This process is repeated a
large number of times, and a distribution of survival, quality-adjusted survival,
and costs results. Modern approaches to Monte Carlo analysis incorporate
probability distributions on the transition probabilities, to enable statistical
measures like mean and variance to be determined [8].

Two enhancements to the Markov model render the formalism more realistic
for clinical studies; both involve adding a time element. First, although the
Markov property requires no memory of prior states, it is possible to superimpose
a time function on a transition probability. The most obvious example of this is
the risk of death, which rises over time regardless of other clinical conditions.
This can be handled in a Markov model by modifying the transition probability
to death using a function: in the tutorial example, time could be incorporated as
p (Well->Dead) = 0.05 + G(age), where G represents the Gompertz mortality
function [9] or another well-characterized actuarial model.

Second, standard practice in decision modeling discounts future costs and
benefits to incorporate risk aversion and the decreasing value of assets and
events in the future. Discounting (see Chapter 11) may be incorporated in
Markov models as simply another function that can modify (i.e., reduce) the
state-dependent incremental utilities.

4.3 MARKOV MODEL EXAMPLE: ADVANCED PROSTATE CANCER

Figure 4.3 depicts a simplified model of the treatment of hormone-naive
advanced prostate cancer with abiraterone acetate (AA). This model and its
attendant data are drawn from Ramamurthy et al.’s study of the costs and
projected benefits of AA versus docetaxel in the treatment of this malignancy,
to which the reader is referred for the complete model and cost-effectiveness
analysis [5]. For this chapter, the model and data are simplified in favor of
didactic value.

In Figure 4.3, states are represented for Stable on AA (denoted AA-Stable in
the figure), AA with the side effect of fatigue (AA-Fatigue), progressive disease
(PD), and Death (Dead). For clarity, arrows from states to themselves have not
been drawn. The figure thus depicts the principal transitions in the model. The
largest state-to-state transition is from progressive disease to death. Table 4.8
contains the initial monthly cycle transition probability matrix for a 68-year-old
man (the median age in the clinical trials on which the model is based). This
table is calculated from baseline estimates given by Ramamurthy et al.

Note that from AA-Stable, the most likely result after one month is to stay in
AA-Stable, but there is a little greater than 2% chance of transitioning to PD.
Additionally, there is a 0.3% chance of developing fatigue within the first six
months of treatment, which would decrease quality of life for up to a year.
A time-dependent general population risk of death must also be added to the
model. At 68 years of age, the annual risk of death is 1.83%, rising over time
according to the Gompertz exponential function. At 84, the risk of death is
10%. Table 4.9 shows the experience over 12 monthly cycles of 10,000 men aged
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68, treated with AA, according to the Markov model with the rising general
death rate. In one month, 254 men have transitioned out of the AA-Stable state,
with the greatest fraction to PD. The number of men in AA-Fatigue rises over
the first six months of treatment, and then decreases as no more are added to
this state and patients recover from treatment-induced fatigue. The number of
men in PD rises each month, but as fewer men are on AA treatment with each
passing month, the increase lessens with each month. In fact, after 32 monthly

Dead

PD

AA-Stable

AA-Fatigue

(First Six Months)

FIGURE 4.3 Principal transitions in prostate cancer model. Transitions to same state
(e.g., Well–Well) are not shown.

TABLE 4.8

Transition Probability Matrix for the Prostate Cancer Model

AA-Stable AA-Fatigue PD Dead

AA-Stable 0.9746 0.0030 0.0208 0.0016

AA-Fatigue 0 0.9776 0.0208 0.0016

PD 0 0.9795 0.0205

Dead 0 1
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cycles (not shown), the number of men in the PD state peaks, then begins to
decline as death due to progressive cancer and the general population mortality
takes a greater toll.

Over an expected lifetime, the Markov model yields a membership of each
state as shown in Figure 4.4. The AA-Stable cohort declines steadily as men
transition to one of the other model states, and back transitions from AA-
Fatigue are never significant. AA-Fatigue rises over the first six months of the
model, then declines to zero by Month 18. PD rises steadily to Month 32, and
then falls slowly as patients die from their disease. The Dead state shows
a typical sigmoid function, as initially few die, then the rate increases as more
men reach PD, and then the rate slows as fewer men remain alive.

Baseline results from this model are presented in Table 4.10. Averaged over
a cohort, the patient with advanced prostate cancer treated with AA can
expect to live 32.9 months with stable disease. The overall 2% risk of fatigue,
averaged across the entire cohort, adds 0.2 months per man in AA-Fatigue.
A further 19.5 months are expected in PD, for an overall life expectancy of
52.6 months. Of course, no single patient has precisely this experience.

Sensitivity analysis (see Chapter 13) can be conducted on Markov transi-
tion probabilities, and modern software easily supports this. An Appendix to
this chapter provides R code developed by the authors that can be used to
replicate the model over the initial five years, and can be adapted to change
parameters for sensitivity analysis or extend the model time [10].

Ramamurthy et al.’s more complete Markov formulation incorporates qual-
ity adjustments and a cost model, and is truncated to five years based on the

TABLE 4.9

Expected State Membership of Markov Cohort Over 12 Monthly
Cycles

Month AA-Stable AA-Fatigue PD Dead

0 10,000 0 0 0

1 9,746 30 208 16

2 9,498 59 407 36

3 9,257 86 598 60

4 9,022 112 780 87

5 8,793 136 954 117

6 8,570 159 1,120 151

7 8,393 140 1,278 188

8 8,219 123 1,430 228

9 8,047 109 1,574 271

10 7,877 96 1,711 316

11 7,710 84 1,842 364

12 7,546 74 1,966 414
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clinical trial results. Later chapters in this book will illustrate how costs and
structural interventions can modify Markov and other stochastic models to
generate sophisticated analyses of pharmacoeconomic problems.

4.3.1 SOFTWARE IMPLEMENTATION

The modeler has a choice of different types of software to run a Markov
model. TreeAge Pro is a specialized program for decision analysis with a full
graphical user interface, where models are set up via “point-and-click” options.
This interface makes it easy to work with, but the proprietary software limits
transparency. It also may be challenging to set up especially complex models
via a graphical interface, and model specifications are limited to the options
available in the software [11]. Alternatively, the modeler could use a general pur-
pose programming language to implement the model. Here we focus on R (R
Foundation for Statistical Computing), but many other programming languages
could be used, including MATLAB (The Math Works Inc.), Python, and SAS

TABLE 4.10

Expected Results of Abiraterone Treatment Model

AA-Stable AA-Fatigue PD Total

Expected months 32.9 0.2 19.5 52.6

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0
0 12 24 36 48 60

AA-Stable AA-Fatigue PD Dead

72 84 96 108 120 132 144 156 168 180

FIGURE 4.4 Natural history of prostate cancer example.
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(SAS Software). R is a freely available, open source statistical programming lan-
guage, with a large library of user-contributed packages written for many types of
analyses. If models are implemented with clear and well-documented code, using
open source programming languages can improve reproducibility and transpar-
ency, making it easier for modelers to share and fully understand one another’s
work [11–13]. Modelers can also borrow functionality from other packages,
giving greater flexibility than what is available from specialized software. These
advantages have led to an increase in the popularity of R for health economic
evaluations [13]. One drawback of R is the learning curve for users unfamiliar
with the language, especially for those with limited programming experience.
Also, due to the nature of the user-contributed code libraries, there may be
syntax differences between packages, and the amount of detail in the documenta-
tion and example code can vary, making some libraries easier to use than others.

Several R libraries contain useful implementations of Markov models, and
more may be added in the future. The heemod (Health Economics Evaluation
Modelling) package is particularly convenient, as it was specifically designed
for cost-effectiveness analysis. We used this library to run our example (code
available online at https://github.com/BethHandorf/Pharmacoeconomics-Mar
kovModels). Other libraries for discrete-time Markov models are CTMCPack
and markovchain. For a more thorough discussion on using R software for
health economic decision modeling, see Jalal et al. [13].
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APPENDIX SAMPLE R CODE FOR PROSTATE CANCER PROBLEM.

############################################
# Example Markov model for first-line treatment of metastatic prostate cancer
# Adapted from Abiraterone Acetate (AA) strategy described in:
# Ramamurthy C, Handorf EA, Correa AF, Beck JR, Geynisman DM.
# Cost-effectiveness of abiraterone versus docetaxel in the treatment of metastatic
# hormone naïve prostate cancer. Urologic Oncology: Seminars and Original
Investigations
# 2019 Oct 1 (Vol. 37, No. 10, pp. 688–695). Elsevier.

library(heemod)

###### Set probabilities
par_mod <- define_parameters(
Pr_SD_to_PD = 0.0208, # Monthly probability of progression from stable disease

# (estimated from LATITUDE trial results)
Pr_SD_to_Death = 0.00164, # Monthly probability of death from progression

# (SSA actuarial life tables - 68 y/o male probability of death 2016)
Pr_PD_to_Death = 0.0205, # Monthly probability of death from progression

# (estimated from MAINSAIL trial results)
Pr_FAT = 0.003, # Probability of fatigue in first 6 months

# (estimated from LATITUDE trial results)
Pr_SD_to_SDFAT = ifelse(model_time≤6, 0.003, 0),

# After 6 months, assume zero probability of fatigue
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Pr_SDFat_to_SD = ifelse(model_time>6, .1, 0)
# After 6 months, 10% per month back transition to SD

)

###### Define transition matrix

#Possible states:
#1) SD: M1 disease (no progression)
#2) SD_FAT: No progression, fatigue
#3) PD: Progressed disease
#4) Death

matAA<-define_transition(
state_names=c(“SD”,”SD_FAT”,”PD”,”Death”),
C, Pr_SD_to_SDFAT, Pr_SD_to_PD, Pr_SD_to_Death, #SD
PR_SDFAT_to_SD, C, Pr_SD_to_PD, Pr_SD_to_Death, #SD_FAT
0, 0, C, Pr_PD_to_Death, #PD
0, 0, 0, C #Death

)

###### Define states, assign value

# Costs, QALYs accrued per cycle in each state would be added here
# for full cost-effectiveness analysis

state_SD<-define_state(
SurvMo = 1
)
state_SD_FAT<-define_state(
SurvMo = 1
)
state_PD<-define_state(
SurvMo = 1
)
state_Death<-define_state(
SurvMo = 0
)

###### Set up AA stragegy

strat_AA <-define_strategy(
transition=matAA,

SD = state_SD,
SD_FAT = state_SD_FAT,
PD = state_PD,
Death = state_Death
)
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###### Run the model
res_mod <- run_model(
parameters=par_mod,
AA=strat_AA, # Only 1 strategy considered here
cycles=60, # 5 years, 1 month cycles
effect=SurvMo, # Effect in months of life
method=“life-table”
)

#Plots of state counts by markov cycle
plot1<-plot(res_mod, type=“counts”, panel=“by_state”,free_y=TRUE)
#Re-order the facets of the graph
plot1[[“data”]]$state_names<-factor(plot1[[“data”]]$state_names,levels=c
(“SD”,”SD_FAT”,”PD”,”Death”))
print(plot1)
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5.1 INTRODUCTION

Retrospective databases, whether created de novo from pre-existing sources, such as
patients’ written charts, or from pre-existing electronic data sets, such as medical
and pharmacy claims databases, electronic medical records (EMRs), national insur-
ance administrative data, hospital medical records, disease-specific patient registries,
or via patient and provider survey data, are a rich source of data for pharmacoeco-
nomic analyses [1–5]. A listing of some population-based data sources (Table 5.1)
and data sources available commercially or from the US government (Table 5.2) is
provided. In addition to health economic analyses, the data collected from these
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TABLE 5.1

Databases Available for Retrospective Analyses

Database Name
Inpatient
Data

Outpatient
Data Advantage(s) Limitation(s)

Claims

IQVIA Real-World
Data Adjudicated
Claims (PharMetrics
Plus) and Hospital
Charge data Master
Databases

√

(limited)
√ Large database.

Potentially more gener-
alizable. Single-record
layout (rather than mul-
tiple databases), mul-
tiple linkages (including
to lab data for a portion
of the data set)

Limited hospital drug
data, cost

General Practice
Research Database
(GPRD)/Clinical Prac-
tice Research Datalink1

√ (very
limited)

√ (in UK) Comprehensive out-
patient data, available
online

UK only. Limited
inpatient, only avail-
able to academic
institutions

THIN √ (very
limited)

√ (in UK) Extension of GPRD/
CPRD, available
commercially

UK only. Extension of
GPRD/CPRD

Claims + Hospital
Geisinger √ √ Comprehensive

inpatient and out-
patient/lab data. Infor-
mation on all payer
types

Regional (rural
Pennsylvania). takes
approximately 16–20
weeks to obtain data

Medicare 5% data sets √ √ Inpatient and out-
patient data

Patients ≥65 years old,
Limited Data Sets
(LDS) files available
quarterly to qualified
researchers (does not
include medications);
Research identifiable
files or RIFs (include
medications) only
available to academic
institutions; more
costly recently

IBM
MarketScan
Hospital/drug

√ √ Hospital drug
information

Unsure about viability
of linking inpatient and
outpatient data. Limited
data licensing to inde-
pendent third party.

Premier √ √ Comprehensive Cost/exclusivity

Hospital only

Cerner √ √ (limited) Comprehensive
inpatient/ICU LOS/labs

Limited outpatient

(Continued )
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data sets can be used for outcomes research (such as analysis of healthcare practice
patterns, epidemiologic analysis of disease progression, prevalence, and characteris-
tics of patient populations), evaluation of populations for prediction of future
events, for formulary evaluation and to supplement prospective data sets, among
other activities. When evidence is not available for a decision that is imminent, ana-
lyses utilizing retrospective databases can provide decision support that is real-time,
relevant, and comprehensive, provided that precautions are taken to address statis-
tical considerations that may be inherent in these data sources. Indeed, several stud-
ies have found that treatment effects in observational studies were neither
quantitatively nor qualitatively different from those obtained in “well-designed”
randomized controlled trials (RCTs) [6, 7]. Advantages of retrospective analyses in
comparison to, for example, RCTs, include the fact that they are relatively inexpen-
sive, quickly done, reflective of different populations, encompass a realistic time
frame, organizationally specific, can be used for benchmarking purposes, include
large sample sizes, and can capture real-world prescribing patterns [1–4, 8].

5.2 CLAIMS AND MEDICATION DATABASES

Healthcare administrative claims data, generally developed and maintained by
third-party payers, offer a convenient and unique approach to studying healthcare
resource utilization and associated cost. These databases represent a convenient
alternative because data already are collected and stored electronically by health
insurance companies. Claims data include outpatient, inpatient, and emergency
room services, along with cost of outpatient prescription drugs. Computerized
health insurance claims databases are maintained largely for billing and administra-
tive purposes. Unlike studies with primary data collection, claims data are not col-
lected to meet specific research objectives. Nevertheless, these databases are useful
for describing healthcare utilization, patterns of care, disease prevalence, drug and
disease outcomes, medication adherence, and cost of care. Administrative claims
data are thus an important source of information about major processes of care.

Administrative claims databases tend to be highly representative of a large,
defined population. Large sample sizes permit enhanced precision and are par-
ticularly useful for studying rare events. As the data already are collected and
computerized, data analysis is inexpensive, particularly in relation to prospect-
ive studies. Claims data also include outpatient drug information for patients
younger than 65 years and, in some instances, for patients aged 65 years or

TABLE 5.1 (Cont.)

Database Name
Inpatient
Data

Outpatient
Data Advantage(s) Limitation(s)

Premier √ √ (very
limited)

Comprehensive
inpatient/ICU LOS

Very limited outpatient

Optum Research Data √ √ (limited) Large cohort of Medi-
care beneficiaries

Standardized financials,
high cost

1 Not really claims, since payer is NHS, but outpatient data.
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older. This is very useful for studying drug outcomes and drug safety. An
added benefit of using claims data is that it precludes any imposition on the
patient, physician, or other provider.

As previously stated, the most important benefit of using claims databases to
analyze clinical and economic outcomes is ease and convenience. The need to
examine clinical, economic, and humanistic outcomes usually is limited by prac-
tical considerations, such as financial and time constraints, as well as concerns
about patient privacy. Given these practical realities, the use of a claims database
for some or all data collection offers an attractive alternative. Claims databases
offer many important advantages for conducting health outcomes research. As
mentioned, unlike RCTs, they reflect routine clinical “real world” practice. RCTs
include carefully selected populations of particular ages and disease severities
with few or no comorbidities. In addition, the procedures and protocols in RCTs
are not often representative of routine clinical care. Moreover, patient compliance
typically is greater in RCTs than in the “real world” because of the support ser-
vices available to treat adverse effects and the tendency of RCT participants to be
more compliant than the population at large. For example, although guideline-
recommended therapies reduce major adverse cardiovascular events (MACE) in
patients after myocardial infarction (MI) or those with atherosclerotic disease
(ATH), adherence is poor. Bansilal and colleagues used a large managed care
organization (MCO) database to determine the association between medication
adherence levels and long-term MACE in these patients [9]. The primary
outcome measure was a composite of all-cause death, MI, stroke, or coronary
revascularization. Using proportion of days covered for statins and angiotensin-
converting enzyme inhibitors, patients were stratified as fully adherent (≥80%),
partially adherent (≥40% to ≤79%), or nonadherent (<40%). Per-patient annual
direct medical (ADM) costs were estimated by using unit costs from two national
files. Data were analyzed for 4,015 post-MI patients and 12,976 patients with
ATH. In the post-MI cohort, the fully adherent group had a significantly lower
rate of MACE than the nonadherent (18.9% vs. 26.3%; hazard ratio [HR]: 0.73;
p = 0.0004) and partially adherent (18.9% vs. 24.7%; HR: 0.81; p = 0.02) groups
at 2 years. The fully adherent group had reduced per-patient ADM costs for MI
hospitalizations of $369 and $440 compared with the partially adherent and non-
adherent groups, respectively. In the ATH cohort, the fully adherent group had
a significantly lower rate of MACE than the nonadherent (8.42% vs. 17.17%;
HR: 0.56; p < 0.0001) and the partially adherent (8.42% vs. 12.18%; HR: 0.76;
p < 0.0001) groups at 2 years. The fully adherent group had reduced per-patient
ADM costs for MI hospitalizations of $371 and $907 compared with the partially
adherent and nonadherent groups, respectively.

Claims databases allow for the measurement of clinical and economic out-
comes (e.g., hospital and emergency room visits) and provide a timely means of
analyzing a problem. Answers can be found in days or weeks, rather than months
or years. Finally, databases offer a great deal of flexibility. Rare diseases or spe-
cific subpopulations can be researched or a problem can be approached in
a number of different ways.
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Beyond such high-level outcome measures, the availability of the diagnosis,
procedure, and revenue codes allow for further specification of a patient’s out-
come. ICD-10-CM codes provide diagnostic information allowing for identifi-
cation of patients with a particular diagnosis or combination of diagnoses.
Physicians’ Current Procedural Terminology, 4th Edition (CPT-4 codes) identi-
fies procedures that are used to bill physician and other professional services.
For example, CPT-4 codes could be used to determine whether a depressed
patient received hypnotherapy. The Healthcare Common Procedure Coding
System (HCPCS) [10] can be used to provide further information on physician
and nonphysician services that are not included in the CPT-4, such as whether
a patient obtaining care in a physician’s office for asthma received an injection
of epinephrine.

The processes of care also can be assessed from a claims database. For
example, the number of outpatient physician visits might be considered a good
measure of the quality of care received by hypertension patients. Procedure codes
allow for the measurement of additional processes of care such as whether atrial
fibrillation patients are receiving annual electrocardiograms or electrical cardio-
version. A typical example of using medical databases for human papillomavirus
(HPV) vaccine-associated studies would be to obtain a preliminary estimate of
the burden of cervical cancer within a particular region. One such study by
Watson et al. [11] used multiple databases to estimate the burden of cervical
cancer in the United States. This study used data from two federal cancer surveil-
lance programs, the Centers for Disease Control and Prevention (CDC)’s
National Program of Cancer Registries and the National Cancer Institute’s Sur-
veillance, Epidemiology, and End Results (SEER) Program to estimate cervical
cancer incidence among different subpopulations. Identification of the study
patients through diagnosis codes obtained in medical databases, incidence and
prevalence rates among different age populations, race and gender mix, and
across various geographical regions [12] can be easily accomplished through such
databases. Another example would be a study examining the cervical cancer inci-
dence before the HPV vaccine was introduced in the United States market [13].
Patients who are or are not provided HPV vaccines for prevention of certain can-
cers could also be studied to evaluate the incidence of future complications and
associated total healthcare costs through most medical databases that provide
clinical and economic data. Important examples include co-payment amount,
formulary coverage of specific drugs, prescription quantity limits, and limits on
mental health benefits. However, most measures of the structure of care are not
found in the database itself but within the patient benefit manual or other records
held by the MCO.

Although databases offer many advantages for conducting outcomes man-
agement, they have some limitations. They may be affected by certain biases
that may compromise the internal validity and, thereby, the robustness of the
data (see Section 5.7). It is widely recognized that the diagnosis found in data-
bases is not always valid or reliable. While some overcoding or upcoding does
occur, in most cases undercoding of actual diagnoses is more common. Under-
coding is an even bigger problem with chronic diseases, which are notoriously
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underreported [14, 15]. The principal finding in the Kern study was that identifi-
cation of veteran diabetes patients with comorbid chronic kidney disease with
a low glomerular filtration rate was severely underreported in Medicare adminis-
trative records [15]. Similarly, the Icen study found misclassification of patients
diagnosed with psoriasis [14]. Several potential reasons for this misclassification
would include the psoriasis diagnosis being differential (rather than actual) in
initial and follow-up physician visits, incorrect initial diagnosis followed by actual
psoriasis treatment, and the use of a psoriasis code that does not specify the type
of psoriasis [14]. Given these limitations, it is helpful to know for which disease
states the coding is insufficient, calling for a review of the medical record. Unfor-
tunately, there is no published research to provide guidance on this issue.

Another important consideration is the severity of illness in patients. The
goal often is to compare the outcomes of care for persons receiving different
treatments or receiving care from different types of providers. Zhao et al. [16]
used a claims database to analyze the prevalence of diabetes-associated com-
plications and comorbidities and its impact on healthcare costs among
patients with diabetic neuropathy. This study identified the various complica-
tions and comorbidities through diagnosis codes and healthcare costs in the
claims data. However, there may be important differences in the patients being
compared that cannot be measured or controlled when using the information
in the database. Other significant indicators of a patient’s disease severity,
including smoking or alcohol consumption status, laboratory values, and
results of other diagnostic tests, are sometimes not available for analysis in the
database. Pharmacy use described in the claims databases usually provides
information about prescription medications. However, over-the-counter medi-
cations that are being used are generally not captured in such databases.

5.2.1 DESCRIPTION OF CLAIMS DATABASE FILES

Medication or claims databases usually have several files that characterize dif-
ferent patient settings where care is provided. These include, among others,
inpatient, outpatient, emergency room, and pharmacy (medication) files. The
outpatient file, for example, contains final action claims data submitted by
institutional outpatient providers. Outpatient claims provide detailed informa-
tion on the date of service, site of service (e.g., home care, physician office),
provider specialty, type of service, and reimbursed charges. These variables
allow us to calculate the frequency of healthcare utilization and its respective
cost. Among several variables listed in outpatient files are date of service,
amount billed, amount paid, and provider information. Each outpatient visit
record in the outpatient file usually includes the following information: date of
visit, whether the respondent/patient saw a physician, type of care received,
type of services received, medicines prescribed, flat-fee information, imputed
sources of payment, total payment, and total charge, among others.

Similarly, claims data for hospitalizations can be an extremely valuable
source for evaluating health outcomes in terms of incidence and frequency of
hospitalization episodes, severity of the hospitalization episode in terms of
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length of stay, and hospitalization costs. Inpatient claims data are also useful
to assess the hospitalization costs associated with a condition or disease in
a population. For each claim during a hospitalization episode, the file contains
fields such as patient identification number, provider number, ICD-10 diagno-
sis code for which service was provided, CPT code for procedures and services
provided, Diagnosis-Related Group (DRG) codes, date of hospital admission,
date of discharge, location of service (outpatient, emergency room, or inpatient),
total amount billed, and total amount paid.

The prescription drug file in a claims data set contains useful information on
medications prescribed and taken by patients. Information is captured when the
patient fills the prescription and a claim is then filed by the pharmacy. Import-
antly, the primary focus of the claim is the fill transaction; claims will show the
activity of when the fills occur, but they will not show whether the patient actu-
ally took the medications. Thus, while claims serve as a proxy for compliance
and adherence due to their ability to show fills, primary research may be used
as an adjunct to determine if the patient actually used the medications when at
home. Each record in the prescription drug file represents one reported pre-
scribed medicine that was purchased for a particular episode. Only prescribed
medicines that were purchased for a particular episode are usually represented
in this file. Medication refills are also usually captured in this file, which allows
for tracking medication usage by the patient longitudinally. The typical descrip-
tors for medications on record include an identifier for each unique prescribed
medicine; detailed characteristics associated with the event (e.g., national drug
code (NDC), medicine name, etc.); conditions, if any, associated with the medi-
cine; the date on which the person first used the medicine; total expenditure
and sources of payments; and the types of pharmacies that filled the house-
hold’s prescriptions.

Similarly, information provided by the emergency room visits file includes
date of the visit, whether the patient saw a doctor, type of care received, type of
services (i.e., lab test, sonogram or ultrasound, X-rays, etc.) received, medicines
prescribed during the visit, cost information, imputed sources of payment, total
payment, and total charge.

5.3 EMRS AND MEDICAL CHARTS

5.3.1 MEDICAL CHART/MEDICAL RECORD IN GENERAL

A medical chart or record is a confidential document that contains detailed, com-
prehensive, and current information about a patient’s healthcare experience,
including diagnoses, treatment, tests, and treatment responses, in addition to
other factors that might play a significant role in his or her health condition. This
document summarizes the overall collected information of an individual related
to health status. Once a patient enters a healthcare setting, be it a hospital or
a clinic, documentation in a medical chart or record begins. Different medical set-
tings follow different types of such documentation practices; however, there are
certain aspects of such a document that remain universal.
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Some of the most common entries in a medical chart or record include the
following: admission information (if to an inpatient facility), medical history
and physical information, medication and treatment orders, medications and
other treatments received, procedures, diagnostic and other tests, insurance,
consultations, patient consents, and discharge information [17]. Documenta-
tion in the chart or record is usually done by the physician or the nurse.

5.3.2 EMRS OR CHARTS

With recent advances in technology, written medical charts or records are grad-
ually being converted to computerized or electronic versions. The electronic ver-
sion (EMRor electronic health record [EHR]), similar to the paper version of the
medical record or chart, serves the same purpose of communication and docu-
mentation of an individual’s contact with a healthcare provider and the decisions
made by the provider regarding the patient, including diagnoses and treatments
provided.

5.3.2.1 Advantages/Disadvantages
Several advantages of EMRs over print medical records or charts recommend
their use by a medical institution. These include ease of chart or record accessibil-
ity, reduction of medical errors and task automation, legible medical notes, con-
tinuity of care and accountability, availability of an organized chart, and
increased security [18]. Other advantages include patient report generation for
certain screening methods, including mammography and cholesterol screening,
patients taking medications that have been recalled, computerized practice or
treatment guidelines that can be easily accessible, adequate alert systems that
would notify the healthcare provider about certain adverse results that require
prompt action, improved documentation and care management, and potential
cost savings [19–22]. However, certain disadvantages of EMRs also should be
noted. There have been instances where a patient’s laboratory and other clinical
data have not been integrated with the computerized system. This affects the
comprehensiveness of the medical record, as key elements pertaining to a
patient’s health are missing. Efforts must be made to integrate all detailed and
pertinent patient information. Another significant disadvantage would be system
crashes during a patient visit that render unavailability of patient information
during that period. Appropriate measures should ensure adequate back-
up in the event of such crashes or system malfunction [18]. Cybersecurity of
EMRs has become a major concern for health systems and patients alike, as theft
of patient-protected health information and wide-scale sequestering of medical
records by ransomware (malware that encrypts records that cannot be decoded
by the health systems) may occur unless a ransom is paid [23].

5.3.2.2 Current Use of EMRs
EMRs show potential benefits for healthcare organizations to adopt them into
their systems and seem to be relatively ubiquitous. In contrast to a 2008
report that only 4% of US physicians had access to an EMR system, a 2016
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publication from a 2016 survey of 6,375 responding physicians in active prac-
tice, 5,389 (84.5%) reported that they used EMRs [24, 25]. Moreover, primary
care physicians and those working in large groups are more likely to use
EMRs than physicians in other medical specialties and smaller size practices,
respectively. Practices report use of EMRs to facilitate computerized prescrip-
tion order entry, record clinical notes, patient’s medications, allergies, and
problem lists, and view laboratory results [26]. Prominent reasons for nonuse
include, among others, the significant direct and indirect cost for licensing the
EMR software. Indirect costs include staff training to use the software and
system maintenance. In addition, large physician practices have greater finan-
cial and technological resources than smaller practices and solo physician
practices and, thus, the higher adoption rate of technological advances, includ-
ing EMRs, in large practices. Other factors include data entry obstacles, lack
of trained staff, lack of uniformity, legal issues, and patient confidentiality and
security concerns [27]. Similarly, another study found a higher adoption rate
of EMRs among physicians owned by HMOs [28].

Some specific examples of how EMRs have been used as databases to provide
insights into various therapeutic areas are provided below. The main advantages
of using EMRs as databases to conduct pharmacoeconomic analyses include the
richness and comprehensiveness of the data to estimate prevalence, incidence,
physician treatment patterns, and cost of various prevention and treatment strat-
egies available to medical practitioners. One example would be a study that esti-
mated the tobacco-use prevalence using EMRs [29]. The availability of data
needed to achieve the study objective eliminates the need to do expensive multiple
surveys of different subpopulations to get the needed answer. This particular
study used the EMR database of a large medical group in Minnesota. The study
showed that out of the overall included population, 19.7% were tobacco users
during the year March 2006 to February 2007, of which 24.2% were aged 18–24
years, 16% were pregnant women, 34.3% were Medicaid enrollees, 40% were
American Indians, and 9.5% were Asians.

Another study used an EMR to analyze associations between cardiometabolic
risk factors and body mass index based on diagnosis and treatment codes [30].
This particular study used the General Electric (GE) Centricity research database,
which is a rich source of data used by more than 20,000 physicians to manage
about 30 million patient records in 49 states. The availability of data, including
clinical data captured in the practice setting, such as diagnoses, patient com-
plaints, medication orders, medication lists, laboratory orders and results, and
biometric readings, was a significant factor in the appropriateness of this data set
for the particular study. The Kaiser Permanente EMR was used to evaluate the
complications associated with dysglycemia and medical costs associated with
nondiabetic hyperglycemia [31]. The EMR database used for this study provided
information on all inpatient admissions, outpatient visits, pharmacy medication
dispenses, and results of laboratory tests. As the study was based on diabetes
patients, clinical information on isolated impaired fasting glucose (available in the
database) was the primary factor used in classifying those patients. The study
found that more than half of the studied dysglycemia patients had at least one
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associated complication as compared with only 34% of normoglycemic patients
(p < 0.001). The study also found that macrovascular and microvascular compli-
cations had an incremental annual cost of $3,863 (p < 0.0001) and $1,874 (p <
0.0001) for dysglycemic patients and normoglycemic patients, respectively.

Another example of use of a practice-based EHR in diabetes assessed the
relationship between diabetes treatment intensification and quality measure
performance [32]. The value of timely treatment intensification for diabetes
patients with above-target HbA1C levels has been well documented, and treat-
ment guidelines from the American Diabetes Association (ADA) and Ameri-
can Association of Clinical Endocrinologists (AACE) recommend treatment
intensification for patients not at treatment goal after 3 months of therapy
[33, 34]. Even with abundant evidence of the value of treatment adjustment,
failure of treatment intensification among patients with above-target HbA1C
is commonly observed. This study aimed to assess the relationship between
diabetes treatment intensification and HbA1C control quality-of-care measures
among patients with uncontrolled type 2 diabetes. Index date for each
included patient was defined as the date of the first above-target HbA1C test
(i.e., ≥8.0%) within the index identification period. The baseline period was
defined as the 6 months prior to the index and the follow-up period was
1 year following the index. Within the follow-up period, the treatment intensi-
fication window was defined as the first 120 days following the study index
date. The presence or absence of timely adjustments to treatment for each
uncontrolled diabetes patient was assessed based on the patient’s treatment
intensification status, and practice quality performance status was assessed
based on patients’ HbA1C control categories (HbA1C levels <8.0%, between
8.0% and 9.0%, or >9.0% were defined as the cohort with superior, moderate,
or poor HbA1C control, respectively) during the follow-up period. Patients’
diabetes treatment intensification statuses were evaluated using the post-index
medication history for each included patient. Following the above-target index
HbA1C level (≥8.0%), treatment intensification was defined as at least one
medication treatment change that satisfied one or more of the following condi-
tions: (1) adding one or more oral antidiabetic (OAD) agents to the existing
treatment; (2) adding or switching to an injectable antidiabetes medication; or
(3) increasing the dosage of existing OADs. Lack of treatment intensification
within the 120-day window after index date was considered treatment inertia.
A total of 547 patients with type 2 diabetes were identified after applying all
inclusion and exclusion criteria; of those, 480 patients had at least one
HbA1C test after the treatment intensification window and were included for
statistical analyses that incorporated an HbA1C test result. Evaluations of
patient baseline characteristics by treatment intensification status demon-
strated that a greater proportion of patients in the cohort with poor HbA1C
control at the index test received treatment intensification than patients in the
cohort with superior HbA1C control (p = 0.0016). The odds of receiving
treatment intensification were about 1.8 times higher among the cohort with
poor HbA1C control in comparison to the cohort with moderate HbA1C con-
trol, p = 0.0027. The more types of OADs used at baseline, the less likely
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patients received treatment intensification, with p values of 0.0058, 0.0102,
and 0.0119 for 4, 3, and 2 OAD types, respectively. Patients with higher BMI
were more likely to receive treatment intensification (p = 0.0159). Timely treat-
ment intensification was significantly associated with superior HbA1C control
but not with poor HbA1C control. Hispanic patients were approximately
three-fold more likely than White patients to still have poor HbA1C control
after treatment intensification, and male patients were approximately half as
likely as female patients to experience poor HbA1C control after treatment
intensification. The study showed that after an above-target HbA1C level
(≥8.0%), more than 60% of patients with type 2 diabetes still did not receive
treatment intensification, an outcome not discernibly different from previous
studies. Although researchers typically rely on large data sets available commer-
cially, the current research showed results consistent with previous publications
using a data set available to practicing clinicians on a daily basis in their practices.
Importantly, the use of a practice’s patient data for important research such as
this demonstrates that these types of analyses are not restricted to researchers
with large data sets, but can also be used to evaluate outcomes for individual clin-
icians and practices.

A final example would be a study evaluating the acceptance of HPV vac-
cine by gynecologists in an urban setting [35]. This study found that the over-
all vaccination rate was 28% (6–55.8%) for the initial 3-month period when
the vaccine became available to the health plan. Unfortunately, vaccination
rates for HPV remain suboptimal to this day [36], more than 10 years later.

5.4 PATIENT-REPORTED OUTCOMES

A patient-reported outcome (PRO), as discussed at length in Chapter 12, is
a measurement and assessment of a patient’s health status coming directly
from the patient rather than from a physician or any other healthcare provider
[37, 38]. The Food and Drug Administration refers to a PRO as any report
coming from patients about a health condition and its treatment [37, 38]. An
important feature that differentiates a PRO from any other measurement is
that the measurement is done directly from the patient. A PRO thus provides
a patient’s perspective on treatment effectiveness [39, 40], adverse events, and
so on. Health-related quality of life (HRQoL), a term closely related to PRO,
specifically refers to measures that are not only patient reported, but also
include the impact of the disease and its treatment on the patient’s well-being
and functioning (see Chapter 12 on PROs) [39, 40]. A PRO measure includes
various facets of disease treatment and its effectiveness as reported directly by
the patient. These include, among others, reports of symptoms such as pain,
fatigue, physical functioning, and well-being in the physical, mental, and social
domains of life [41]. Many health behaviors, including use of tobacco and
alcohol, participation in exercise programs, and so on, are also included in
a typical PRO. Other end points captured in a PRO include patient prefer-
ences for a particular treatment and treatment satisfaction [41]. A PRO meas-
ure can include patient satisfaction with treatment, medication adherence, and
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other aspects of disease treatment, functional status, psychological well-being,
and health status in addition to HRQoL [42, 43].

5.4.1 USE OF PRO INSTRUMENTS IN PHARMACOECONOMIC STUDIES:
FOCUS ON HPV VACCINE STUDIES

Although PROs usually consist of specific health-related questionnaires or
instruments, providing a simple survey questionnaire for patient response also
makes up a simpler form of PRO. This section provides examples of how such
PRO questionnaires have been used in HPV vaccine-related issues and studies.
Gerend and Magloire assessed the awareness, knowledge, and beliefs about
HPV in a racially diverse sample of young adults [44]. The authors used
a survey to obtain respondent-reported responses among 124 students aged
18–26 years from two southeastern universities. The survey assessed demo-
graphics, sexual history, awareness and knowledge of HPV, HPV-related
beliefs, and interest in the HPV vaccine (women only). This study reported
some interesting findings that could be used for further economic studies on
HPV vaccine, including great knowledge of HPV, greater awareness among
women of HPV as compared with men, and a greater interest in HPV educa-
tion among blacks and sexually active respondents. Another study examined
the stage of adoption of the HPV vaccine among college women aged 18–22
years at a New England University [45]. This study used an online survey as
a means to complete the PRO instrument. The survey examined knowledge
of HPV, perceived susceptibility, severity, vaccine benefits or barriers, and
stage of vaccine adoption. The use of such PRO measures provides a useful
means to obtain responses directly from patients (in this case, women) who
have had HPV vaccines or have potential to have one in the future. The ana-
lyzed results indicated that the acceptance of the vaccine was high among the
study respondents and that the importance of Pap smears was also high [45].
Yet another study analyzed the acceptance of HPV vaccine among mid-adult
women [46]. This particular study used a convenience sample of 472 mid-adult
women who completed a survey that examined the demographic, knowledge,
and behavioral variables associated with HPV vaccine acceptance. The study
assumed clinical significance, as some of the variables that were found to be
associated with vaccination among the study respondents could be useful to
clinicians to identify potential female patients who might be more receptive
to the vaccine. These variables included women who were younger than
55 years, had had an abnormal Pap test, understood the association of HPV
and cervical cancer, and those who felt at risk for HPV infection.

Though HPV-related diseases are more common among women, men are also
exposed to the virus in varying forms and severity. A study similar to the previous
study based on women and by the same authors examined the variables associ-
ated with HPV vaccine acceptance among men [47]. Similar results were obtained
from this study in that the (male) respondents with a higher education and know-
ledge about HPV were more likely to accept HPV vaccination than others.
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5.5 ALTERNATIVE POPULATION-BASED DATA SOURCES

As mentioned in Table 5.1, numerous data sets are available either commer-
cially or from the US government. These include:

1. IBM MarketScan® Research Data Sets (formerly Truven MarketScan®
Commercial Claims and Medicare Supplemental databases)

The MarketScan database is a private sector health data resource that
reflects the healthcare experience of employees and their dependents, as well
as Medicare-eligible retirees with employer-provided Medicare Supplemental
plans covered by the health benefit programs of large employers. It contains
medical and pharmacy claims of over 150 employers, including more than 100
health plans (payers), representing approximately 43 million covered lives, and
encounters data representing commercially-insured, Medicare supplemental,
and Medicaid patients. Longitudinal tracking, across health plans and across
payers, is possible. Health care for the individuals in the commercial database
is provided under several fee-for-service and fully/partially capitated health
plans that include PPOs, EPOs (exclusive provider organizations), indemnity
plans, and HMOs. Medical claims are linked to outpatient prescription drug
claims and person-level enrollment information.

The Medicare Supplemental database includes the Medicare-covered portion
of payment, the employer-paid portion, and out-of-pocket patient expenses. This
database provides detailed information on cost, use, and outcomes data in both
the inpatient and the outpatient settings. For the majority of the population, the
medical claims are linked to outpatient prescription drug claims and person-level
enrollment data through use of unique patient identifiers.

In addition to the commercial claims and Medicare supplemental data
sets, other data sets within the MarketScan network include the multi-state
Medicaid database (provides information on medical-surgical, and prescrip-
tion drugs of more than 47 million Medicaid enrollees from multiple states),
Health and Productivity Management database (providing information on
workplace absence, short and long-term disability, and worker’s compensa-
tion data), the Lab Results database (a claims-linked database providing
information on inpatient, outpatient drug data, as well as laboratory and
enrollment data), and the Dental database.

2. IQVIA Real-World Data Adjudicated Claims (PharMetrics Plus) and
Hospital Charge Data Master Databases

The IQVIA PharMetrics Plus database comprises information on pharmacy,
provider, and facility claims for more than 150 million patients enrolled in
approximately 60 US health plans, with data from 90% of US hospitals and
80% of all US doctors. Due to the broad reach of these data, records in the
database are representative of the national, commercially-insured population
based on age and gender for individuals aged 65 and under. The database
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includes standard fields such as inpatient and outpatient diagnoses and pro-
cedures, and retail and mail-order prescription records and payments. The
database also includes information on demographic variables, product type,
payer type, and start and stop dates of health plan enrollment.

In addition to the claims database, the IQVIA hospital charge data master
(CDM) comprises records from hospital charge data master files, the service
order records drawn from hospital operational files and other reference
sources that roll up to the UB-04 claim form (also known as the CMS-1450
form; the standard claim form that can be used by institutional facilities for
the billing of medical claims). This data set comprises data from more than
450 hospitals within the United States. Data elements include, among others,
all inpatient and outpatient encounters within a facility, linked to individual
departments, with detailed drug, procedure, diagnosis, and applied charge
data for the entire stay.

3. Medicare Data Sets

Available from the Centers for Medicare and Medicaid Services (CMS), a benefit
of using the Medicare databases is that they include inpatient and outpatient
data for most US hospitals, with the exception of VA (Veterans Affairs) and mili-
tary hospitals. These data are readily available for transformation to a usable
form for comparative purposes. A limitation is that they are primarily constituted
by an elderly sector of the population (approximately 44 million patients), so are
not generalizable to younger populations.

There are several types of encrypted general-use Medicare data sets, avail-
able in 5% or 100% segments, which are described below:

• LDS (Limited Data Set) Standard Analytical Files (SAFs): contain pay-
ment information for each institutional (inpatient, outpatient, skilled
nursing facility, hospice, or home health agency) and noninstitutional
(physician and durable medical equipment providers) claim type.

• LDS MEDPAR (Medicare Provider Analysis and Review) Files: contain
inpatient hospital “final action stay” records, summarizing all services
received by a patient from admission through discharge.

• LDS Denominator File: contains demographic and enrollment data
about each beneficiary in the Medicare and Medicare Managed Care
Organizations.

• LDS Outpatient Hospital Prospective Payment System (PPS): con-
tains select claim level data from the Hospital Outpatient PPS claims.

In contrast to LDS files, Research Identifiable Files (RIFs) may include medi-
cations, which may be necessary for some types of studies. However, RIFs are
only available to academic institutions or the rare commercial institution that
has a data use agreement from CMS.
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4. Geisinger Electronic Health Records

Geisinger Health System is a regional healthcare provider to central, south-
central, and northeastern Pennsylvania and southern New Jersey. The EHR
databases from Geisinger provide information on more than three million
patients on inpatient and outpatient clinic records, with integrated electronic
scheduling, clinical lab, and radiology system data. The data include an associated
reason code for every prescription. Being from hospitals and community-based
physicians throughout rural Pennsylvania, the data may not be generalizable to all
US patients.

5. Cerner

Cerner Health Facts™ contains inpatient and hospital outpatient data on over
12 million patients; the Cerner data set also contains lab results data. However,
no longitudinal (claims) data are available from community-based outpatient
settings.

6. Premier Healthcare Database

Premier’s Healthcare Database (PHD) is a large, US hospital-based, service-level,
all-payer database that includes information on inpatient discharges, primarily
from geographically diverse nonprofit, nongovernmental and community and
teaching hospitals and health systems from rural and urban areas. Hospitals/
healthcare systems submit administrative, healthcare utilization, and financial
data from patient encounters. Inpatient admissions include over 108 million visits
since 2012, representing approximately 25% of annual US inpatient admissions.
Outpatient encounters include over 765 million outpatient visits, with more than
71 million visits per year since 2012. The PHD contains data from over
208 million unique patients, who can be tracked within the same hospital across
the inpatient and hospital-based outpatient settings within the database using
a unique masked identifier.

7. Optum Research (formerly Ingenix) Data (data)

Comprehensive real-world data from Optum (a part of UnitedHealth group)
include 180+ million patients with administrative claims records, 80+ million
patients with electronic health records, and 12+ million patients with inte-
grated claims and electronic health records data. The Optum De-identified
Clinformatics extended data mart database, within the Optum Research Data,
is an adjudicated administrative health claims database for members with pri-
vate health insurance who are fully insured in commercial plans or in adminis-
trative services only, legacy Medicare Choice lives (prior to January 2006),
and Medicare Advantage (Medicare Advantage Prescription drug coverage
starting January 2006).
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8. General Practice Research Database (GPRD)/Clinical Practice Research
Datalink (CPRD)

The General Practice Research Database, or GPRD is a computerized data-
base of anonymized data from patient records. Diagnoses and prescribing
data have been collected continuously since 1987, and data on approximately
4.8 million patients in the United Kingdom (England and Wales), equivalent
to about 7% of the population, were collected from nearly 600 general prac-
tices nationwide. This data set provides valuable information on side effects of
medicines, causes of disease and medical disorders and associated risk factors,
outcomes of treatments, unmet medical need, improvement of screening or diag-
nosis, and comparative effectiveness of treatments. In 2012, the GPRD was
incorporated into the CPRD (cprd.com), resulting in a linkage of UK primary
care practitioner data with other data sets, currently comprising 45 million
patients, including 13 million currently registered patients [48]. The GPRD/
CPRD is maintained by the UK Medicines and Healthcare Products Regulatory
Agency (MHRA) in London. Unlike THIN (described below), CPRD does not
extract data from a particular proprietary clinical system, is available only non-
commercially, and is the only database accessible online [48].

9. THIN (The Health Improvement Network)

The Health Improvement Network, or THIN, is a large UK primary care data-
base providing data collected from over 550 general practitioners across the
United Kingdom, for research in cardiovascular disease, mental health, pharma-
coepidemiology, and other fields of primary care research. Data collection com-
menced in January 2003, using information extracted from Vision, a widely used
general practice management software package developed by In Practice Systems.
The database is regularly updated and currently contains data on over 10 million
individuals living in the United Kingdom and is available for commercial use via
third-party vendors [48]. THIN was developed as a replacement for the GPRD,
because the EPIC version of the GPRD was discontinued from April 2002.
THIN’s pluses and minuses are the same as GPRD.

10. Framingham Heart Study (FHS) Database

The Framingham Study is a longitudinal, population-based observational study
that began in 1948 in Framingham, Massachusetts, USA. The original cohort,
founded in 1948, consisted of 5,209 men and women. In 1971, a second-
generation cohort was recruited into the Framingham Offspring/Spouse (FOS)
study [49], for which children of the original cohort were eligible. Spouses were
also eligible if they had become pregnant with or sired two or more children by
a participant in the Offspring cohort. Cohort members are examined in the clinic
every 4 years, on average, where they undergo a standardized protocol for data
collection approved by the Boston University Institutional Review Board. This
database provides a rich source of information related to cardiovascular disease,
including coronary heart disease, stroke, hypertension, peripheral arterial disease,
and congestive heart failure.

96 Pharmacoeconomics

http://www.cprd.com


11. Atherosclerosis Risk in Communities (ARIC) Database

The ARIC Study, sponsored by the US National Heart, Lung, and Blood
Institute (NHLBI) of the National Institutes of Health, is a prospective, obser-
vational biracial follow-up of 15,792 men and women between the ages of 45
and 64, recruited from Forsyth County, North Carolina; Jackson, Mississippi;
suburbs of Minneapolis, Minnesota; and Washington County, Maryland. This
database provides key clinical information on the etiology and risk factors
associated with atherosclerosis, along with differences in medical care obtained
by patients of different races and genders, as well as those residing in different
locations.

5.6 ISSUES AND CHALLENGES

Although numerous advantages exist with use of retrospective databases over
RCTs, considerations of internal validity (reproducibility of results) and external
validity (generalizability of results) must be addressed. For example, with RCTs,
because they are protocol-based, it is relatively easy to reproduce the results of
a trial of a hypertension drug using an identical protocol in a patient population
following the same inclusion and exclusion criteria. With retrospective databases,
however, confounding factors (see Section 5.7), such as a center effect or regional
variation in the prevalence of hypertension, may limit the ability to duplicate
these results between different populations, such as between two MCOs or even
between two locations of the same MCO. However, the very measure that helps
to ensure reproducibility, namely, the protocol, may reduce the study’s usefulness
in the real world, as any analysis would have to consider protocol-induced (artifi-
cial) resource use and costs. Generalizability refers to the ability to extrapolate
results across healthcare settings or even countries. A pharmacoeconomic ana-
lysis must provide segregated healthcare resource units (e.g., numbers of MRIs)
and costs per unit (e.g., cost of an individual MRI), so that if a resource is not
used the same way in the United States and Canada or the costs are very dissimi-
lar, each country can use the resource data, but customize it to its own cost struc-
ture. The caveat here, of course, is to determine whether the resource utilization
itself is similar across the two countries.

To determine whether a data set is appropriate to answer a pharmacoeconomic
question, key attributes of the population (such as demographics), covered services,
benefit design (e.g., nationalized or private insurance, deductibles, patient co-
payments), formulary design (e.g., open [allowing any drug], closed [allowing
only specific drugs]), and any special programs (e.g., physician detailing, disease
management initiatives) that might affect its generalizability should be enumerated.
Johnson outlines a six-step process for conducting outcomes analyses using admin-
istrative databases, as seen in Table 5.3 [50]. Since practice, including available treat-
ments and procedures, changes over time, it is essential to use retrospective data to
continuously inform health policy decisions [51]. An example of use of data from
a pharmacy benefits management claims database to evaluate two decision-analytic
models regarding the cost-effectiveness of therapeutic regimens to eradicate
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Helicobacter pylori in ulcer patients is a case in point [52]. The authors found
that model results overstated the cost-effectiveness of the previously more cost-
effective regimen and underestimated the cost-effectiveness of the other regi-
men such that the model assumptions and, ultimately, the outcomes, were not
supported by the data.

Regardless of how the data are used, issues of data quality must be addressed.
A checklist detailing many of these issues was published as a result of an Inter-
national Society for Pharmacoeconomics and Outcomes Research (ISPOR) Task
Force’s being convened to examine the quality of published studies using retro-
spective databases [4]. It is important to have plans to examine a representative
number or percentage of source documents (e.g., patient charts) to determine
that diagnosis and procedure codes are reasonably accurate. For example, Fiven-
son, Arnold, and colleagues determined that approximately 10% of diagnosis
codes in an atopic dermatitis study utilizing a claims data set were inaccurate [3].
Moreover, coding may change over time, such as use of different versions of the
ICD-9-CM/ICD-10-CM coding set, differing frequencies of use of codes accord-
ing to reimbursement policies, or varying regional codes (e.g., HCPCS codes)
[10]. In a study to evaluate the coding data quality of the Healthcare Cost & Util-
ization Project (HCUP) National Inpatient Sample, claims data failed to identify
more than 50% of patients with prognostically important conditions, and miscod-
ing of diagnoses resulted in nonspecific disease identification or coexisting condi-
tions [53]. Coding error rates were found to vary widely among states, hospitals
within states, geographic location, and hospital characteristics. Coding errors
were significantly different among patient demographic groups and whether the
state used billing versus abstract data.

In addition, services may not be captured in the database because they are
administered elsewhere (e.g., carved out, such as mental health services) [4]. It
is important to minimize missing and out-of-range values, ensure consistency
of data (e.g., no menopausal men), control duplication of records, assure con-
tinuous enrollment, ascertain the availability of the continuum of care, and
make certain that data have been recorded uniformly because if there is incon-
sistency in coding, there is inconsistency in the resulting judgments derived
from that data [54]. Sax [55] mentions the pharmacy field “days supply” as
potentially problematic as an indicator of patient adherence to a medication

TABLE 5.3

Steps to Designing a Database Study
Define the study objective

Extract key data elements

Apply inclusion, exclusion criteria

Perform initial data analyses

Create “calculated” analysis variables

Compare groups
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regimen due to dose titrations (e.g., gradual reductions in prednisone “burst”
during asthma exacerbation [56–58]) unknown actual use, as-needed medications,
and possible unknown sources of additional medication, such as from an unre-
lated pharmacy. As with prospective data collection, benchmarking values against
established norms, such as the SF-36 for quality of life, will assure researchers
that the data are representative of the population at large [59].

It is also important that data links across relational databases be consistent.
For example, there should be unique identifiers for each family member.
Many times, data must be concatenated (or joined) from several fields in
a database to make sure that this is the case [22]. Moreover, events may not
be recorded at the same time when they actually occurred for the patient, as
with provider charges occurring perhaps 6 months to a year after a procedure
for a Medicare patient, so it is essential that this lag time is considered when
evaluating an episode of care [60].

In addition, temporal factors may play a role in analyses using preexisting
data, either in terms of hypothesis testing or as a confounder. For example,
Arnold et al. [61] used clinical trials, published literature, and a modified Delphi
panel to establish the effect of timing of administration of a thrombin inhibitor,
argatroban, on its cost-effectiveness in patients with heparin-induced thrombo-
cytopenia (that is, heparin hypersensitivity). It is also necessary to define and
identify disease-related costs. For example, in patients with asthma, should
claims be related only to the various ICD-9/10 diagnosis codes for the various
types of asthma [62, 63] or should there be the added requirement of an
asthma medication or diagnostic testing sometime during the index or eligibility
period? It is useful to be able to “tease out” costs during a hospitalization
related specifically to the diagnosis of interest; however, this is often not possible
because of potential overlap between the diagnosis of interest and concomi-
tant illness, for example, pneumonia in the case of asthma. In addition, espe-
cially with the changeover from ICD-9 to ICD-10 and other “advances” in
coding, inclusion or exclusion of certain diagnoses or inadequate/inappropri-
ate characterization of a disease state may cause selection bias in a study.
For example, in a study of FeNO use in asthma discussed at length in Chap-
ter 3 (Cost of Illness), in recent years, patients with an ICD-9 code of 493.2
(asthmatic bronchitis) have been noted to have characteristics more similar
to patients with chronic obstructive pulmonary disease (COPD) than those
with only asthma [64, 65]. Since 39% of the patients in that study had
a diagnosis code of 493.2 at their index date and FeNO is less predictive of
responsiveness in patients with COPD [66–68], this would bias the study
against FeNO. It is also important to account for natural history of disease
progression and medical and technological advances that may have impacted
on the course of the disease in terms of the index date (beginning of data
collection) and duration of data inclusion. Indeed, Motheral et al. [4] discuss
the idea of censoring or the time limits placed at the beginning (left censor-
ing, period prior to initiation of therapy of interest) or end (right censoring,
follow-up time) of the study period.
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5.7 STATISTICAL ISSUES

Bias is a significant problem that must be addressed. The types of biases include
selection bias, measurement bias, length of measurement bias, misspecification
bias, interdependence [69] of observations, diagnostic ascertainment bias, auto-
correlation, omitted variables, quasi-omitted variables, investigator bias, obsoles-
cence bias, vintage bias (human and physical capital), claims versus encounter
bias and recall bias. The reader is referred to a lengthy review of these types of
bias by Sackett et al. [69].

The previously discussed ISPOR checklist has categorized many of the statis-
tical issues faced by users of retrospective databases in general [4]. These are
reviewed below. The first is control variables. It is important to account for the
effects of all variables so that biased estimates of treatment effects, or confound-
ing bias, do not occur. For example, it is important to control for the likelihood
of prescribing certain compounds given a patient’s history of comorbid condi-
tions. Common approaches to adjust for confounding bias include stratification
of the cohort by different levels of the confounding variables with comparison of
the treatments within potential confounders, such as demographic variables; the
use of multivariate statistical techniques; cohort matching and propensity adjust-
ment [4, 70]. Multivariate regression can be used to estimate the association
among the intervention, confounders, and the outcome of interest [70, 71]. Strati-
fication divides the study population into subgroups on the basis of confounding
characteristics to reduce confounding. With cohort matching, a comparator
cohort is generated based on the characteristics associated with confounding bias
[72]. A Chronic Disease Score or the Charlson Index can be used to control for
comorbidities [73] or disease severity [74], respectively. Moreover, instrumental
variable techniques can be used to group patients by choice of treatment, but
without unmeasured confounders.

Selection bias may be introduced by the inclusion and exclusion criteria used
in the study design, especially considering that missing data, such as a diagnosis
code, may cause records not to be chosen for analysis. Thus, the population
selected may not be representative of all patients that should be included [54].
A method that is frequently used to account for potential inherent differences
in treatment assignment due to selection bias in retrospective databases is pro-
pensity scoring [75]. The propensity score, defined as the conditional probability
of being treated given the covariates, or the probability that a patient would
have been treated, can be used to balance the covariates in the groups, thereby
adjusting the estimate of the treatment effect. To estimate the propensity score,
one models the distribution of the treatment indicator variables, considering the
observed covariates. The propensity score is then estimated using logistic regres-
sion or discriminant analysis. Once estimated, the propensity score can be used
to reduce bias through matching, stratification (sub-classification), regression
adjustment, or some combination of all three. All of these methods are an
attempt to affect a “quasi-randomized” treatment allocation.

Since much data in retrospective databases are expected to be skewed in its dis-
tribution, techniques such as log-transformation and two-part models should be
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considered. Methods such as hierarchical linear modeling may be appropriate
when using pooled data from several different health plans or multiple sites from
a single health plan to account for center (i.e., facility) effects [4].

Outliers are another issue that must be addressed in economic analyses using
retrospective databases. As mentioned earlier and particularly true when using
costs rather than the quantity of units, such as hospital days or physician office
visits, to measure resource use, just a small number of outliers can greatly skew
the analysis. Logarithmic transformations that have been used previously to
reduce skewness can create difficulties with non-log-transformed costs. For this
reason, it is often prudent to record unit costs and quantities separately and, if
a high degree of skewness is present, use the quantities for the statistical calcula-
tion, then multiply by a set dollar amount from a fee schedule.

5.8 NON-US COUNTRIES

As with US data sources, international retrospective databases encompass such
sources as national insurance administrative data, hospital medical records, dis-
ease-specific patient registries, and provider survey data [5]. Table 5.1 contains
two (UK) sources of such data from a study that qualitatively reviewed the meth-
odological challenges of using non-US databases to conduct retrospective eco-
nomic and outcomes research studies. The researchers conducted a MEDLINE
search to obtain a sample of literature published after the year 2000 on retro-
spective analyses incorporating non-US databases using the ISPOR checklist and
found that few economic studies included information on indirect cost compo-
nents because of the lack of relevant data. Moreover, they found that the quality
of non-US retrospective database analyses varied, leading to problems of internal
validity, that is, study design errors that could compromise conclusions. The eco-
nomic data sets were from Italy, Australia, United Kingdom, Switzerland, Singa-
pore, seven other European countries, Canada, Japan, and France. Only 2 of the
12 studies reviewed included indirect costs. Ten of the 12 economic studies
reviewed made adjustments for confounders or sampling schemes (i.e., to reduce
selection bias), typically with some form of regression model. The authors
thought that five studies did not sufficiently address external validity. Sensitivity
analysis was the most common approach to dealing with uncertainty in the stud-
ies. Five studies extensively discussed study limitations; however, all of the study
authors, as well as the review author, advised caution regarding the external val-
idity of the studies.

5.9 THE FUTURE IN USE OF RETROSPECTIVE DATABASES

What is the future for use of retrospective databases to inform pharmacoeco-
nomic analyses? Stallings et al. [76] developed a decision-analytic model to test
the likely cost impact of a hypothetical pharmacogenomic test to determine
a preferred initial therapy in patients with asthma. They compared annualized
per patient cost distributions using a “test all” strategy for a nonresponse geno-
type prior to treating versus “test none.” They found that the cost savings per
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patient of the testing strategy simulation ranged from US$200 to US$767 (95%
confidence interval) and concluded that upfront testing costs were likely to be
offset by avoided nonresponse costs. This shows the potential use of retrospective
database studies in analytic data mining and improved hypothesis testing.

Indeed, there is an increasing likelihood that genomics will play a role in deci-
sions about drug use. For example, a theoretical Markov model showed pharmaco-
genomic-guided dosing for anticoagulation with warfarin not to be cost-effective
in patients with nonvalvular atrial fibrillation [77]. Interestingly, another algorithm
using logistic regression from international retrospective databases published
around the same time as the Markov model showed that incorporating pharmaco-
genetic information was more likely to result in a therapeutic international normal-
ized ratio (INR), the major method of determining anticoagulation, than use of
clinical data alone [78]. However, the data used to inform the Markov model were
published studies that did not include the latter study and the algorithm did not
indicate the clinical diagnoses, or the clinical outcomes, of the patients who were
more or less likely to be within a therapeutic INR. Indeed, over the past 10 years,
research has still not demonstrated definitive results on the subject [79]. Therefore,
more research is needed to coordinate these conflicting results. Indeed, another
potential for the use of such easily available databases is to increase their use in
validation studies. Testing the same hypothesis in several databases increases the
validity of the study results, thereby increasing the credibility of the findings. How-
ever, in the near future, retrospective databases are more likely to continue being
used for quick identification of treatment patterns, prevalence, and incidence of
a medical condition, medication adherence, and persistence, and healthcare
resource utilization and associated costs related to a particular medical condition.
With clinical trials becoming more and more time consuming and expensive, retro-
spective databases offer an attractive alternative to provide this “real-life” medical
information.
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6.1 INTRODUCTION

The principal issues that are addressed in this chapter are:

1. In what circumstances is cost-minimisation analysis (CMA) an appro-
priate methodology to undertake health economic evaluations?

2. What steps can be taken to improve the quality of CMAs and, hence,
their reliability as a basis for healthcare decision-making?

The appropriateness of any economic methodology depends on the nature
and quality of the underlying clinical evidence, with evaluations based on
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inappropriate or poor-quality clinical data failing to provide a reliable basis
for healthcare decision-making. The primacy of clinical data is particularly evi-
dent in the case of CMA in which, depending on the health benefits between two
equivalent competing options, the least expensive option is preferred. Perhaps as
a consequence of this apparent simplicity, scant attention has been previously
paid to the theoretical and practical methods used to obtain the analysis or to
establish the appropriateness of this choice of methodology.

Many sources of clinical evidence can be used to support economic ana-
lyses; however, the ‘gold standard’ is normally considered to be the random-
ised controlled trial (RCT), which holds everything constant except the drug
being evaluated. Given that, by definition, the results of clinical trials cannot
be known in advance, it is impossible to plan to undertake a CMA alongside
an RCT because it is not certain that the health outcomes being compared
will be equivalent [1]. Therefore, no prospective economic evaluation starts
out as a CMA; only when the health outcomes generated are empirically demon-
strated to be ‘identical or similar’ will the CMA be adopted as an appropriate
methodology by the Health Economist.

CMA is frequently portrayed as being the ‘poor relation’ amongst health
economic methodologies, with its apparent simplicity making it ‘unworthy’ of
being considered alongside more theoretically rigorous health economic meth-
odologies. However, it is important that Health Economists recognise and
acknowledge that the theoretical underpinnings of CMA are just as rigorous
as those underpinning other methods of economic evaluation. Perhaps as
a consequence of the comparative disdain in which CMA has been held, its
use to date appears to have been poorly conceived and frequently inappropri-
ate. In this regard, CMA has been frequently employed as an evaluative tool
to support and justify the introduction of cheaper, but potentially less effect-
ive, treatments. The ‘normal’ procedure is for the analyst to simply assume
that the benefits of a new health technology are equivalent to the existing
‘gold standard’ therapy without having sufficient evidence to justify such
a claim. For example, by assuming a ‘class effect’ for similar types of drugs
(each drug in a class having equivalent outcomes), it then becomes possible to
base subsequent analysis solely on a comparison of costs—an attractive strat-
egy if you are introducing a cheaper but less effective drug.

The methods currently used to justify equivalence in outcomes in a CMA
therefore appear to be inherently flawed and indicate an urgent need to improve
the theoretical rigour underlying this aspect of CMAs if they are to be taken
seriously as a method of economic evaluation. The current haphazard approach
leads to a situation in which CMA is typically described in health economics
textbooks as a form of economic evaluation where:

. . . the decision simply revolves around the costs. [2]

This interpretation ignores the extreme rigour that should be required to
ensure equivalence in health benefits prior to deciding on the appropriateness
of employing CMA as an economic methodology. The crucial decision relates
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to the fact that CMA has been defined as being an appropriate methodology.
Underpinning this decision is a detailed analysis of clinical data that convince
the analyst that the interventions being compared lead to equivalent health
outcomes. Only in these strictly controlled circumstances is it legitimate for
CMA to concentrate on costs alone. As such, a crucial and indispensable element
underpinning the decision to use CMA as an economic methodology is the need
to unambiguously determine the therapeutic equivalence of competing interven-
tions [3]. In practice, therefore, the extent to which CMA represents an appropri-
ate methodological structure is entirely determined by the interpretation that can
be placed on the available clinical evidence.

6.2 WHAT IS MEANT BY ‘THERAPEUTIC EQUIVALENCE’?

The extent to which alternative healthcare technologies are sufficiently similar to
justify the use of CMA is an area of theoretical uncertainty and, thus, still open
to subjective interpretation, with the majority of published CMAs appearing to
be based on assumptions rather than evidence of clinical equivalence. This pri-
macy of ‘hope’ over ‘experience’ may lead to misleading recommendations being
made for healthcare resource allocation.

Given this fact, it is perhaps surprising that the exact nature of the evidence
base required to support therapeutic equivalence and, hence, the appropriateness
of CMA as an economic methodology, has not been subjected to more intense
scrutiny. CMAs are frequently based on the results of clinical trials that have
attempted but failed to identify the superiority of a new drug over the existing
‘gold standard’ therapy. This occurs despite the obvious fact that the inability of
a health intervention to prove superiority in a superiority trial (ST) in no way
indicates that this necessarily implies clinical equivalence. Advances in clinical
trial design have made it easier to directly compare clinical equivalence in a more
meaningful manner with the development of non-inferiority (NI) trials allowing
this issue to be directly addressed. Alternatively, when a trial is initially designed
as an ST but such superiority remains unproven, the analysis can then be
switched from superiority to NI in appropriate cases. The use of such improve-
ments in trial design should enable CMAs to be more effectively targeted in
a manner that ensures that they are only undertaken in appropriate circumstances
using rigorous sources of evidence. In this manner, only CMAs that meet min-
imum standards with regard to clinical equivalence will be accepted; CMAs that
fail to meet such criteria will be dismissed. Such an approach would enable
Health Economics to gain enhanced credibility from the use of this potentially
valuable economic methodology.

6.3 OPTIMIZING EVIDENCE FROM CLINICAL TRIALS

If CMAs are to form a reliable basis for healthcare decision-making, then due
consideration must be given to the claims of clinical equivalence that are cru-
cial to the adoption of the CMA methodology. The implications of adopting
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an inappropriate clinical trial design or misinterpreting the results of a clinical
trial are often considerable:

. . . wrongly discounting treatments as ineffective will deprive patients of better care.
Wrongly accepting treatments as effective exposes patients to needless risks and wastes. [4]

RCTs typically compare the gold standard existing treatment with a new interven-
tion [5]. RCTs can be structured to evaluate superiority (ST), therapeutic equiva-
lence (equivalence trial or ET) or therapeutic non-inferiority (NI). The trial designs
differ in terms of their objectives and these differences have significant implications
for the use of the CMA methodology. The greatest support for the use of CMA
occurs when an ET proves that two healthcare technologies are clinically equivalent;
however, there exists a myriad of ‘grey’ areas that may be indicative of therapeutic
equivalence and, hence, require more careful analytical consideration and judge-
ment. Such ‘grey’ areas are analysed in detail in the remainder of this chapter.

6.4 SOURCES OF CLINICAL TRIAL EVIDENCE

6.4.1 SUPERIORITY TRIALS

The extent to which clinical evidence can be used to inform CMAs is dependent
on the design of the RCT. STs are specifically designed to show a difference in
health benefits between two healthcare technologies. Typically, the primary
objective of the research is to determine whether an experimental intervention
is more efficacious than the established gold standard treatment. In order to
identify whether or not there is a difference in health benefits between two
healthcare technologies it is necessary to begin with a null hypothesis that treat-
ment X yields the same health benefits as treatment Y.

The ST estimates the probability that the effect exists when the null hypoth-
esis is true using the test statistic (p-value). The smaller the size of the p-value,
the more likely it is that the null hypothesis is false and that a difference does
exist between the health benefits generated by the treatments. p-Values, there-
fore, can statistically identify whether an effect is likely by conveying informa-
tion about the probability of an incorrect inference given the observed effect
but can say nothing about the size of the effect or its clinical relevance.

Newby and Hill [3] emphasize the inadequacy of using p-values obtained in
STs to interpret the results of clinical trials and recommend the use of confi-
dence intervals (CIs) and personal judgement when determining clinical
equivalence before accepting or rejecting an equivalence claim.

leaving it up to the reader to decide whether the confidence interval includes or
excludes potentially clinically important differences between two treatments. If it
does not exclude differences . . . assume that the two drugs are not the same. [3]

When the original objective of an ST is not achieved, there is an obvious
incentive to refocus the analysis to support more restricted claims of clinical
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equivalence. However, STs are specifically designed to demonstrate that there
is, indeed, a difference and, thus, to reject the null hypothesis in favour of the
alternative hypothesis (i.e., that there is a difference). In STs, it is impossible
to prove that the null hypothesis is true, as the aim is to reject it by proving
that the observed difference is unlikely to be commensurate with equivalent
health outcomes of the competing healthcare interventions.

In CMAs, the clinical evidence from failed STs is often misinterpreted as
proving that the healthcare interventions being compared are clinically
equivalent. Such methodological flaws resulting from the misinterpretation
of clinical trial results can also ‘. . . lead to false claims, inconsistencies and
harm to patients’ [6].

However, if appropriately planned for, it is possible to switch the focus of
the analysis from superiority to NI in a single trial if the ST is well designed
and has adequate sample size to provide evidence of health equivalence for
use in CMAs.

6.4.2 EQUIVALENCE TRIALS

6.4.2.1 Characteristics of ETs
ETs are intended to demonstrate that the effect of a new treatment is not
worse than the effect of the current treatment by more than a specified equiva-
lence margin. The aim of an ET is, therefore, to specifically rule out significant
clinical differences between the treatments by directly evaluating the extent to
which two healthcare interventions have equivalent therapeutic effects. Briggs
and O’Brien [7] argue that CMA should only be used when clinical evidence
has been obtained from an ET. They argue that it is inappropriate to use the
results of a failed ST to demonstrate clinical equivalence ‘. . . unless a study
has been specifically designed to show the equivalence of treatments it would
be inappropriate to conduct cost-minimisation analysis’ [7].

However, even where an ET indicates clinical equivalence in primary out-
comes, scrutiny of secondary outcomes may reveal significant differences in
safety, cost or convenience.

. . . one therapy may offer clinical benefits such as a more convenient administration
schedule, less potential for drug interaction or lower cost. [8]

Reliance on a single clinical measure of effectiveness may potentially be mis-
leading, as it may fail to capture an important difference in health outcome
between two alternatives. Thus, ideally, clinical equivalence should be estab-
lished for a range of health outcomes before the use of CMA can be sup-
ported. In addition, in evaluating claims of clinical equivalence it is important
to acknowledge that:

It is never correct to claim that . . . there is no difference in effects of treatments . . . There
will always be some uncertainty surrounding estimates of treatment effects, and a small
difference can never be excluded. [9]
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Even if one compared a drug with itself, there may be a difference; therefore,
it cannot be unequivocally claimed that two healthcare technologies are clinic-
ally equivalent. Thus, even where the results of ETs indicate no difference, this
may simply indicate that the true difference exists outside of the specified
probabilities of error.

If clinical equivalence is demonstrated in a good-quality ET, there remain
two other issues that must be addressed prior to unambiguously supporting the
use of the cost-minimisation approach. Firstly, the primary health outcome
must encompass the main benefit(s) of the treatments being compared. Sec-
ondly, any differences in other health outcomes, for example, secondary health
outcomes, must be sufficiently small so as not to attain clinical significance.
If these assumptions cannot be substantiated, then it would not be appropriate
to adopt the CMA approach despite the availability of equivalence obtained in
an ET.

6.4.3 EQUIVALENCE RANGE/MARGIN

A crucial step in the design of an ET is the definition of clinical equivalence. The
equivalence margin attempts to incorporate all values that represent unimportant
clinical differences in treatment and must be stipulated in advance of the clinical
trial. The equivalence range, therefore, includes the largest difference between
treatments that is clinically acceptable before treatments become defined as pro-
viding significantly different benefits. The first step in any ET is, therefore, to
define the smallest unacceptable degree of inferiority/superiority to ensure that
the ET can be appropriately powered. For example:

. . . if the difference between the two groups in respect of change in pulmonary func-
tion was within ± 1.5 units, then the treatments would be considered clinically
equivalent. [11]

This means that if treatment A is better or worse than treatment B by more
than a 1.5 unit change in pulmonary function, then the two treatments cannot
be considered to be clinically equivalent. Clinical equivalence can be claimed
if the 95% CI around the difference in treatments is found to lie entirely
within the pre-determined clinical equivalence margin. The setting of the
equivalence margin communicates a judgement about what is and what is not
clinically and statistically acceptable [12].

Clearly, different clinical situations require different equivalence margins
and analysts must justify their chosen range with regard to clinician’s opinion
and previous trials comparing active controls with placebo. An equivalence
margin that is too wide could mean that significantly different treatments are
considered to be clinically equivalent; conversely an equivalence margin that is
too narrow could mean that clinically equivalent treatments are mislabelled as
being significantly different. It is important that good clinical judgement be
combined with sound clinical and statistical reasoning to ensure that the
chosen margin is clinically relevant and statistically feasible.
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A negative study result from an ET can take two forms. The CI around the
treatment difference may lie partially within the equivalence margin or it can lie
entirely outside, leading to the conclusion that the probability of a difference
between the two treatments has not been rejected (see Figure 6.1).

6.5 NI TRIALS

6.5.1 CHARACTERISTICS OF AN NI TRIAL

The rationale behind an NI trial is to demonstrate that the new healthcare
technology is not worse than the current healthcare technology by a pre-stated
clinical margin. This type of trial is useful when the clinical issue relates to
the extent to which the new healthcare technology is as good as the current
therapy. In NI trials, analysis is focussed entirely in one direction—typically
the new treatment is not worse than the established therapy by more than the
specified non-inferiority margin. An improvement of any size fits within the
definition of non-inferiority. Span et al. published the first paper that acknow-
ledged the link between CMA and NI trials:

. . . the most efficient analysis of the clinical effect in a cost minimisation study is
the non-inferiority analysis. [13]

They conclude that: ‘. . . to obtain valid results from a cost-minimisation study,
care has to be taken to adapt the correct methodology for non-inferiority testing
in clinical outcomes’.

To ensure a robust interpretation of trial results, some analysts call for both per
protocol and intention to treat analyses to be conducted, and only if both types of

FIGURE 6.1 Interpretation of equivalence trials.
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analyses support the hypothesis should non-inferiority be claimed [14]. Therefore,
the extent and nature of the evidence of non-inferiority that is required to provide
an acceptable platform on which to base a CMA is still open to debate.

6.5.2 NON-INFERIORITY RANGE/MARGIN

The non-inferiority range should be set in relation to the clinical notion of
a minimally important effect, a notion akin to the minimally important differ-
ence in clinical studies (see Chapter 12). An acceptable non-inferiority margin
depends on defining a difference that has previously been identified as being
not clinically significant. To do this, two additional conditions must be met.
Firstly, the smallest expected effect of the active control over placebo must
exceed this margin to ensure that no positively harmful treatments can be
introduced and, secondly, the margin must be no greater than the difference
between active treatments judged clinically important.

In an NI trial, non-inferiority is demonstrated when the CI around the treat-
ment difference lies entirely to the right of the lower bound of the non-inferiority
margin. Non-inferiority is not demonstrated if the lower bound of the CI lies to
the left of the non-inferiority margin (see Figure 6.2).

6.6 OTHER ISSUES TO BE ADDRESSED IN EVALUATING
‘EQUIVALENCE’

6.6.1 STATISTICAL VERSUS CLINICAL SIGNIFICANCE

One of the failings of statistical analyses undertaken in the context of an ST is
that statistical significance may differ from clinical significance. Variables that

FIGURE 6.2 Interpreting NI trials using CIs.

116 Pharmacoeconomics



are identified as exhibiting statistically significant differences may be entirely
unimportant from a clinical perspective, whereas clinically crucial differences
remain crucial even if they fail to achieve statistical significance. In contrast,
in ETs and NI trials, statistical and clinical significance are inextricably linked
via the setting of equivalence and non-inferiority margins.

6.6.2 EQUIVALENCE IN SINGLE OR MULTIPLE OUTCOMES?

In any clinical trial it is necessary to identify a primary health outcome that is
common to the competing alternative interventions. Choice and measurement of
such an outcome measure is a crucial step in determining the appropriateness of
the trial as an evidence source on which to undertake CMAs. To be of value, the
primary health outcome must be the dominant outcome from the perspective of
both patients and clinicians and capture the most clinically relevant benefits of
the competing treatments. If not, then the claims of clinical equivalence, even
when based on ETs, are not sufficient to support the use of CMA.

In clinical practice it is highly unlikely that two healthcare interventions will
yield exactly the same health benefits in all dimensions of clinical and patient out-
comes. Typically, the design of ETs and NI trials identifies a single endpoint for
comparison despite the perception that one of the treatments is likely to offer sig-
nificant advantages in another area. For example, where two treatments have
equal efficacy, yet one is more convenient to patients, the extent to which CMA
can be appropriately utilized depends largely on the perspective adopted by the
analysis. Where equivalence is not demonstrated for all important outcomes, the
analyst must provide explicit justification for using the cost-minimisation
approach in light of the study question and perspective. In large part, the inter-
pretation of clinical equivalence will depend on the specific circumstances of the
clinical trial, the range of outcomes being measured and the judgement of the
analyst. In such cases it is difficult to provide specific guidance that would be
appropriate in all cases.

6.6.3 WHOSE VIEWS OF CLINICAL EQUIVALENCE SHOULD BE PRE-EMINENT?

Definitions of clinical equivalence will depend on whose views we consider to
be the most important (patients, clinicians or society). Generally, lead investi-
gators in clinical trials specify the primary and secondary health outcomes to
be measured, with the identification of the primary outcome measure being
based on relevant clinical experience, published clinical evidence and know-
ledge of patient needs. The crucial factor is to ensure that the choice of health
outcome measures used to determine clinical equivalence is clinically meaning-
ful to the patient.

6.6.4 OVER WHAT PERIOD SHOULD WE EVALUATE CLINICAL EQUIVALENCE?

The benefits of healthcare technologies will vary in relation to the time point
at which they are measured. In a clinical trial, the primary health outcome

What Is Cost-Minimisation Analysis? 117



measure might exhibit statistically significant differences at three months but
not at six or twelve months. In such circumstances, do we interpret the thera-
peutic interventions as being equivalent and, hence, appropriate for analysis in
the context of a CMA? It is important to acknowledge that clinical equiva-
lence is a dynamic rather than a static concept and that any demonstration of
clinical equivalence is likely to be sustained over time.

6.7 EFFECTIVELY TARGETING THE USE OF CMA

The current use of RCT evidence to support statements of clinical equivalence is
inadequate, and clear and appropriate decision rules are required in the future to
ensure that unambiguous evidence of clinical equivalence is a feature of future
CMAs. In the absence of such evidence it would be potentially misleading to use
flawed analyses as the basis for healthcare decision-making. While it is compara-
tively simplistic to identify circumstances in which the use of CMA as an eco-
nomic methodology is clearly inappropriate, it is more difficult to specify
unambiguous decision rules that identify circumstances in which clinical evidence
clearly supports the use of CMA. The appropriateness of using CMA must be
judged in the light of the totality of the clinical evidence supporting or refuting
the hypothesis of therapeutic equivalence between two competing interventions,
combined with the specialist knowledge and expertise required to place such evi-
dence in context. However, certain limited guidance can be provided with regard
to effectively targeting CMAs.

Firstly, clinical evidence from a well-designed ET represents the gold standard
in supporting claims of clinical equivalence in support of the use of CMA. How-
ever, even where data are available from an ET, it still remains important to con-
sider the extent to which the primary health outcome fully captures the benefits
being derived from the healthcare treatments being compared. If other benefits
are clinically meaningful to patients and clinicians, additional comparisons of
clinical equivalence may be required.

Secondly, failure to prove clinical superiority should not be interpreted as
providing evidence of clinical equivalence. In certain circumstances, and if
planned into trial design, trial data may be reanalysed to assess clinical
equivalence, but such reinterpretation of the data set requires further analysis
if the use of CMA is to be justified. In particular, a non-inferiority statement
should be stipulated in the clinical trial protocol to ensure that valuable infor-
mation can still be derived even if superiority is not proven.

Thirdly, the extent to which data from NI trials can be used to justify CMAs
is currently subject to a great amount of uncertainty. In particular, to what extent
proof of non-inferiority represents an acceptable approximation of ‘therapeutic
equivalence’ and, hence, justifies the use of CMAs, is still open to debate.

Finally, where CMAs are based on valid claims of clinical equivalence
derived from appropriate sources of RCT evidence it represents an appropriate
and powerful method of economic evaluation. However, it is crucial that in
interpreting the results of CMAs, the informed decision-maker uses his/her
clinical judgement to assess the quality and quantity of the evidence in
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support of therapeutic equivalence and, hence, identifies the theoretical justifi-
cation for the use of CMA. In cases where the decision maker does not accept
claims of clinical equivalence, the results of the CMA should clearly not be
used as the basis for their decision-making.

6.8 CONCLUSIONS

The cost-minimisation method of economic evaluation has always been employed
in a more haphazard manner than other methods of economic evaluation. It is
crucial to rectify this situation to ensure that only techniques that prove to be
robust and reliable in improving healthcare decision-making are incorporated
into the toolkit employed by the Health Economist. However, exactly how ‘simi-
lar’ do outcomes have to be to support the application of this powerful economic
methodology? The most appropriate design for a clinical trial to generate evi-
dence that two healthcare technologies are ‘identical or similar’ is the ET. Such
trials are specifically designed for this purpose and, therefore, any differences that
are identified between the health interventions being compared are neither clinic-
ally nor statistically significant.

It is essential that Health Economists and decision makers are clear on what
is meant by the concept of clinical equivalence and to acknowledge that, given
the heterogeneous nature of patient populations and treatment outcomes, it is
likely to prove impossible to achieve exact equivalence between competing
healthcare interventions. Ultimately, it is up to the Health Economist to justify
the use of CMA just as it is up to the decision maker to judge the extent to
which the results obtained should be influential in determining their decision-
making.
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7.1 THE RATIONALE FOR COST-EFFECTIVENESS ANALYSIS

As noted in prior chapters, the economic evaluation of pharmacotherapies
and other healthcare interventions is growing in importance as the resources
directed toward health care account for progressively larger portions of the
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budgets of governments, employers, and individuals. Making rational deci-
sions under conditions of resource constraints requires a method for com-
paring alternatives across a range of outcomes that allow a direct ranking of
the costs and benefits of specific strategies for preventing or treating a par-
ticular illness.

Cost-effectiveness analysis (CEA) provides a framework to compare two
or more decision options by examining the ratio of the differences in costs
and the differences in health effectiveness between options. The overall goal
of CEA is to provide a single measure, the incremental cost-effectiveness
ratio (ICER), which relates the amount of benefit derived by making an
alternative treatment choice to the differential cost of that option. When
two options are being compared, the ICER is calculated by the formula:

COption 2 � COption 1

EffectivenessOption 2 � EffectivenessOption 1

In medical or pharmacoeconomic CEA, health resource costs (the numer-
ator) are in monetary terms, representing the difference in costs between
choosing option 1 or option 2. In CEA, the differential benefits of the
various options (the denominator) are nonmonetary terms and represent
the change in health effectiveness values implied by choosing option 1
over option 2. Typically, these health outcomes are measured as lives
saved, life years gained, illness events avoided, or a variety of other clin-
ical or health outcomes. Unlike CEA, cost-benefit analysis values both the
costs and benefits of interventions in monetary terms. Cost-utility analysis,
a subset of CEA where intervention effectiveness is adjusted based on the
desirability (or utility) of the resulting health states, is discussed in
Chapter 4.

7.2 THE COST-EFFECTIVENESS PLANE

A pharmacoeconomic analysis is often interested in how much more of a
health outcome can be obtained for a given financial expenditure. Limited
resources may, many times, constrain choices between medical options. The
cost-effectiveness plane serves to clarify when these choices may be easy or
difficult [1]. It is typically drawn with the differences in cost (or the incremen-
tal cost) on the y-axis and the differences in effectiveness (or incremental
effectiveness) between the two options on the x-axis (Figure 7.1). In this
example, we will compare an existing program to a new program. The existing
program, acting as the comparator, will be at the origin of both the cost and
effectiveness axes, depicting the current level of expenditure and benefit to
which a new therapy is compared. The new therapy can be more expensive,
less expensive, or equivalent in costs to the current option. Similarly, the new
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option can be more effective, less effective, or equivalent in clinical effective-
ness as compared with the existing strategy or therapy.

This produces four possible options for the results of the analysis of a new
strategy compared to an existing one. If the new program is less expensive and
more effective than the existing program, then the point representing the new pro-
gram falls into the southeast (SE) quadrant of the cost-effectiveness plane. Points
in this quadrant are called dominant, and strategies that have such a characteristic
should be chosen over the existing strategy due to their superior outcome at
diminished costs. These strategies are “cheaper and better” than current therapy
and should be adopted. Examples of strategies in this quadrant are laparoscopic
cholecystectomy compared to other therapies for symptomatic gallstones [2, 3] or
interventions to decrease cigarette smoking [4, 5].

If, in contrast, the new program is more expensive and less effective than the
existing one, this program falls into the northwest quadrant (NW) of the plane.
Strategies in this quadrant are considered to be dominated by the current strategy
and should not be chosen due to poorer outcomes at greater cost. Although exist-
ing strategies in this quadrant are perhaps relatively rare, there are examples of
strategies that do not appear to derive a benefit, yet incur substantially more
healthcare costs than other options. Examples include amoxicillin prophylaxis
compared to no antibiotic for dental procedures in patients at moderate risk for
infective endocarditis [6], and magnetic resonance imaging vs. endocrinologic
follow-up of patients with asymptomatic pituitary microadenomas [7].
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If the new program is either dominant or dominated (i.e., in the SE or NW
quadrants), a formal CEA is not needed to assist the decision – the decision is
(or should be) obvious. However, if the new program is both more effective
and more costly, falling in the northeast (NE) quadrant, then a CEA would
be useful to define the trade-off between increases in costs and effectiveness
and to calculate the cost per unit of effectiveness gained. Similarly, a CEA
would also be useful if the new strategy fell into the SW quadrant as being
both less costly and less effective than the existing program, once again to
define the trade-offs between programs and to ascertain the cost-effectiveness
ratio. This graphical display emphasizes one of the most fundamental and
important concepts of CEA: it is only useful when there is a trade-off between
the cost of a strategy and the benefit derived from that strategy.

7.3 BASIC COMPONENTS OF A CEA

Several factors should be considered in the construction of a CEA (Table 7.1) A
high-quality analysis will include and describe the relevant options, clearly state
the perspective of the analysis, choose a relevant time horizon over which to track
costs and effects, consider the appropriate population, accurately measure the
costs and effectiveness of the competing options, account for the differential value
of costs and outcomes that occur at different times in the future, and account for
uncertainties of assumptions and values in the context of an appropriately
constructed analytic model. These concepts are described in more detail later.

7.3.1 ENUMERATION OF THE OPTIONS

A CEA requires a comparison between two or more options. A single option
cannot be cost-effective in isolation – an option can be considered cost-effective

TABLE 7.1

Basic Components of a CEA

Component Examples

Options/comparisons Existing program compared to new program

Perspective of the analysis Societal, health system, patient

Time horizon 1 month, 5 years, lifetime

Scope of the analysis Population affected, inclusion (or not) of secondary or collateral effects

Measuring and valuing costs Cost categories included in the analysis are determined by the perspec-
tive taken

Measuring and valuing
outcomes

Life years saved, illnesses avoided, cases found

Time preference Discounting future costs and effectiveness

Analytic models Clinical trial data, decision analysis model

Accounting for uncertainty Sensitivity analysis
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or not cost-effective only in comparison to other options. Additionally, the cost-
effectiveness of a strategy is highly dependent upon the specific choice of compara-
tors included in the analysis and care must be taken to include all clinically reason-
able options. At a minimum, the comparators include the current standard of care
and a range of typically utilized options. A CEA of a new therapy compared to a
strategy that is not typically used, or is only used in atypical circumstances, is not
useful for clinicians or policy makers. It is often reasonable to include a “do noth-
ing” option, especially if doing nothing is a legitimate clinical strategy, but also
as a baseline comparator to assess the clinical realism of the model and analysis.
In all cases, the strategies should be described in sufficient detail such that the
reader could replicate or implement the strategy in their own setting.

7.3.2 PERSPECTIVE OF THE ANALYSIS

Choosing the perspective or set of perspectives to be considered in a CEA is
essential, since this choice determines the cost values to be contained in the
analysis. For example, an analysis from the societal perspective considers all
costs, while an analysis from the patient perspective would only consider costs
borne by the patient. Other possible perspectives include the third-party payer
(insurance) or health system perspective where costs for which these entities
are responsible are considered in the analysis; the hospital or health agency
perspective includes the costs of providing various health services. Whenever
possible, the societal perspective should be included in the set of perspectives
to be considered in analysis, since it is the broadest and is recommended for
the reference case analysis by the Panel on Cost-Effectiveness in Health and
Medicine, although the most recent edition of the book developed based on
this panel recommends also including the third-party perspective [8–10].

7.3.3 TIME HORIZON

The analyst must decide a priori how long the costs and effects of the various
interventions in the analysis will be tracked. This is usually determined by the
clinical features of the illness or its treatment. For example, a CEA of a new
antibiotic for acute dysuria treatment in otherwise healthy women might appro-
priately have a very short time horizon of only a month, as there are virtually
no long-term effects of either the disease or its treatments. On the other hand,
CEAs designed to value the effects of cardiovascular risk reduction need to
assess the outcomes for much longer time periods; typically, such an analysis
would follow treatments and effects until death. In any case, all strategies must
be followed and/or modeled for the same time horizon. Methods for modeling
costs and effects, even in situations where this modeling extends beyond the
existence of specific data, are provided in Chapters 2, 4, 6, 7, 9, and 10.

7.3.4 SCOPE OF THE ANALYSIS

An analysis might be relevant for an entire population or for only a relatively
small population subgroup; the analyst will need to appropriately choose the
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cohort to be considered in the analysis. For example, if an intervention is to be
directed toward elderly patients with diabetes in order to prevent diabetes com-
plications, limiting the scope of the analysis to an elderly, diabetic population is
a logical choice, while if the question is regarding diabetes prevention in adults,
a broader population scope is required. The scope of outcomes to be considered
is another important consideration. In the example above, a broad or narrow
range of diabetes outcomes could be considered in an analysis of elderly diabet-
ics. If a small number of complications is modeled, the data requirements of the
model would be less but the conclusions might be limited compared to a model
with a broader range of complications considered. However, a more compre-
hensive model would have greater data needs and require more complex model
construction. Choosing the scope of an analysis often means finding a balance
between simplicity and complexity, frequently determined by the clinical situ-
ation modeled and the question to be examined.

7.3.5 MEASURING AND VALUING COSTS

Data sources for costs must be found and incorporated into the analysis. Cost
data can be obtained from clinical trials, but more often other sources will
need to be utilized. In addition, the analyst will need to choose between
micro-costing or macro-costing methodologies or some mix of the two, often
based on the perspective taken in the analysis [8, 9]. Micro-costing enumerates
and identifies each item that is incorporated into a particular service, requiring
detailed data on supplies used, personnel, room, and instrument costs, and
often needing time-and-motion studies to accurately capture medical service
costs. Macro-costing (or gross costing) uses data, often from large government
databases, to estimate average costs for a care episode, for example, the aver-
age cost of coronary artery bypass grafting or of a hospital stay for pneumo-
nia. In the United States, Medicare reimbursement data or the Healthcare
Cost and Utilization Project (HCUP) database are often used for this purpose.
Further detail on cost estimation can be found in Chapter 3.

7.3.6 MEASURING AND VALUING OUTCOMES

The effectiveness outcome for the analysis must be chosen and outcomes data
found, often based on data availability. Randomized trials are excellent data
sources on the effects of therapies, but study entrance criteria frequently limit
applicability to a more general patient population (see Chapter 5 for more on
this). Cohort studies are useful for risk factor determination and for determin-
ing the natural history of an illness. Administrative databases are excellent
sources for broad population-based estimates of disease and for the effective-
ness of therapies, unlike randomized trials which, in general, estimate efficacy.
However, administrative databases often pose difficulties in accounting for
possible confounding variables in the data set (see Chapter 5). Meta-analyses
provide summary measures for parameters, but studies considered are gener-
ally limited to randomized trials, thus limiting generalizability. The perspective
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of the analysis may also influence the effectiveness outcome chosen. Life years
or quality-adjusted life years (QALYs) gained are certainly relevant for analyses
using the relatively broad-based societal or health system perspectives, but may
not be as important when a narrower perspective is chosen, such as that of an
individual hospital, when effectiveness measures such as bed day saved or drug
administration error avoided might be more relevant.

7.3.7 TIME PREFERENCE

The differential timing of costs and outcomes should be considered in the ana-
lysis. This is typically accomplished through the use of discount rates, where costs
and outcomes that occur in the present have higher values than those in the
future (see Chapter 11).

7.3.8 CHOICE OF ANALYTIC MODELING METHOD

The analytic model must also be selected. Cost data from clinical trials can
allow relatively straightforward calculation of ICERs between management
options, often the intervention arms of the clinical trial. More often, data for
the analysis must come from a variety of sources (see Chapter 5) and may
require a decision analysis model as a framework for data synthesis.

7.3.9 ACCOUNTING FOR UNCERTAINTY

Finally, a sensitivity analysis to elucidate the effects of uncertainty on model
results should be performed. There are many goals of sensitivity analysis, and
methods for conducting such analyses are detailed in Chapter 13. During model
construction and validation, sensitivity analysis is useful as a “debugging tool”
to assure that the model behaves as it was designed to behave. After the model
is finished, sensitivity analysis is useful to determine which variables have a
large impact on the outcomes. Sensitivity analyses can be used to determine the
cost-effectiveness ratio in specified subgroups of an analysis, as well as to deter-
mine how much a change in one variable will alter the cost-effectiveness ratio.
Finally, probabilistic sensitivity analyses (described in Chapter 13) can be used
to produce a version of a confidence limit or probability range around the cost-
effectiveness ratio.

7.4 CALCULATION OF ICERS

The ICER requires a detailed enumeration of the costs and benefits of the
strategies being compared. Methods for measuring and estimating the costs
and benefits of strategies and interventions are often quite complicated, and
are detailed in Chapters 3 and 4. In this section, we use the results of two
existing pharmacoeconomic studies to illustrate the calculation and use of the
ICER. Details of the enumeration of costs and outcomes in these studies are
detailed in the studies themselves [11, 12].
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The following example considers low-molecular-weight heparin (LMWH)
compared to warfarin for the secondary prevention of venous thromboembol-
ism in patients with cancer. Aujesky [11] used a decision analysis model and
data from a variety of sources to estimate the incremental cost-effectiveness of
two anticoagulant regimens. Analysis results, with effectiveness in life years,
are outlined in Table 7.2.

Typically, the first step in calculation of ICERs among mutually exclusive
options is to order the options by cost. LMWH is both more costly and more
effective than warfarin, thus, neither strategy is dominant or dominated, and a
CEA would be useful. Subtracting the cost of the warfarin strategy from that of
the LMWH strategy produces the incremental cost; the difference in life expect-
ancy between strategies is the incremental effectiveness. Dividing the incremental
cost by the incremental effectiveness produces the ICER, $115,847 per life year
gained, the unit cost of an additional life year occurring as a result of LMWH
rather than warfarin use.

7.4.1 DOMINANCE AND EXTENDED DOMINANCE

Calculation of the ICER can be more complicated when more than two strat-
egies are being considered. One of the complicating characteristics of the ana-
lysis of many options is that some strategies may be dominated by others and
should be removed from further analysis. As noted above in the description of
the cost-effectiveness plane, any strategy that is more expensive and less effective
than an existing option for the same illness (e.g., as in the left upper quadrant-
compared to the existing strategy) is said to be strictly dominated: one would
never choose such a strategy when an alternative would produce a better out-
come at a cheaper price. Strict dominance is also termed strong dominance by
some authors. A second type of dominance occurs when a particular strategy is
more expensive and less effective than a linear combination of two other strat-
egies. This is called extended dominance, and represents a situation where one
could achieve a better outcome at less cost by treating a proportion of the
population with a combination of two alternative strategies. Extended domin-
ance can also be referred to as weak dominance. We illustrate both types of
dominance in the following example.

TABLE 7.2

Cost-effectiveness of LMWH Compared to Warfarin for the Secondary
Prevention of Venous Thromboembolism

Strategy Cost
Life Expectancy

(yrs)
Incremental

Cost
Incremental
Effectiveness

Incremental Cost-Effectiveness
Ratio

Warfarin $7,720 1.377 — — —

LMWH $15,329 1.442 $7,609 0.066 $115,847

128 Pharmacoeconomics



Using a decision analysis model, the authors [12] performed a CEA of test-
ing and antiviral treatment strategies for adult influenza, using days of influenza
illness avoided as an effectiveness term in the analysis. Cost and effectiveness
values estimated by this analysis are shown in Table 7.3. (Please note that in a
separate analysis the other neuraminidase inhibitor, oseltamivir, was substituted
for zanamivir, with similar cost-effectiveness results.) Once again, the first step
in calculation of ICERs among mutually exclusive options is to order the
options by cost. Doing so with these data will result in Table 7.4. Next, options
of lesser effectiveness and of equal or greater cost than another option are
removed due to strict, or strong, dominance. These strictly dominated options,
which are inferior both in terms of cost and effectiveness, do not need to be
considered further in the analysis [13]. In this example, “Testing, then amanta-
dine” costs more and is less effective than “Amantadine (without testing).”
Thus “Testing, then amantadine” is strictly dominated and can be removed
from consideration. Similarly, “Testing, then rimantadine” also costs more and
is less effective than the “Amantadine” strategy and the “rimantadine (without
testing)” strategy and, thus, can be eliminated due to strict dominance. The
results after the removal of these two strategies are shown in Table 7.5.

TABLE 7.3

Cost and Effectiveness Values for Influenza Management Strategies

Strategy Cost Illness Days Avoided

No testing or treatment $92.70 0

Amantadine $97.50 0.54

Rimantadine $119.10 0.59

Zanamivir $137.10 0.74

Testing, then amantadine $115.00 0.44

Testing, then rimantadine $125.50 0.48

Testing, then zanamivir $134.30 0.60

TABLE 7.4

Strategies Ordered by Cost

Strategy Cost Illness Days Avoided

No testing or treatment $92.70 0

Amantadine $97.50 0.54

Testing, then amantadine $115.00 0.44

Rimantadine $119.10 0.59

Testing, then rimantadine $125.50 0.48

Testing, then zanamivir $134.30 0.60

Zanamivir $137.10 0.74
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Then, starting with the second row, the differences in cost and effectiveness
between that row and the preceding row are calculated. These results are the
incremental cost and incremental effectiveness between the two adjacent strat-
egies. The incremental cost divided by the incremental effectiveness produces the
ICER, the cost per illness day prevented. This same procedure is then followed
for the remaining rows in Table 7.6.

Next, the calculated ICERs are examined for extended, or weak, dominance
of strategies [14]. This occurs when the ICER of a strategy is greater than the
strategy below it, signifying that the subsequent strategy would be preferred. In
this case, both “rimantadine” and “Test/zanamivir” have higher ICERs than
zanamivir; thus, these strategies would not be preferred over zanamivir due to
extended dominance and can be removed from consideration. Removing these
strategies from the table and recalculating the ICER of zanamivir compared to
Amantadine results in Table 7.7.

This same procedure can be performed graphically using the cost-effective-
ness plane [8]. Figure 7.2 depicts all the testing and treatment strategies on the
cost-effectiveness plane. Starting with “No testing or treatment,” the least costly
option, a line is drawn to the strategy that produces the shallowest slope (i.e.,
the smallest ICER), which is “Amantadine.” From Amantadine, the shallowest

TABLE 7.5

Remaining Strategies When Strictly Dominated Strategies Are Removed

Strategy Cost Illness Days Avoided

No testing or treatment $92.70 0

Amantadine $97.50 0.54

Rimantadine $119.10 0.59

Testing, then zanamivir $134.30 0.60

Zanamivir $137.10 0.74

TABLE 7.6

Calculation of the ICER

Strategy Cost
Illness Days
Avoided

Incremental
Cost

Incremental
Effectiveness ICER

No testing or
treatment $92.70 0 — — —

Amantadine $97.50 0.54 $4.90 0.54 $9.06

Rimantadine $119.10 0.59 $21.50 0.05 $430.00

Test/zanamivir $134.30 0.60 $15.20 0.01 $1520.00

Zanamivir $137.10 0.74 $2.80 0.14 $20.00
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positive slope is to zanamivir. The resulting line is the cost-effectiveness efficient
frontier; any point not on this frontier is dominated, either by strict dominance
or extended dominance, as illustrated by the “Testing” strategies and by the
“rimantadine” strategy.

All reasonable strategies should be included in CEAs so that true ICERs can
be calculated. For example, if the Amantadine strategy was omitted from the
analysis above, the ICER of zanamivir would be $60 per illness day avoided

TABLE 7.7

Removal of Strategies Due to Extended Dominance

Strategy Cost
Illness Days
Avoided

Incremental
Cost

Incremental
Effectiveness ICER

No testing or
treatment $92.70 0 — — —

Amantadine $97.50 0.54 $4.90 0.54 $9.06

Zanamivir $137.10 0.74 $39.60 0.20 $198.00
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FIGURE 7.2 Cost and effectiveness values for influenza management strategies plotted
on the cost-effectiveness plane. The line represents the cost-effectiveness efficient frontier,
red points denote strategies that are strictly dominated, and open points show strategies
that are eliminated from consideration by extended dominance.
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when compared to “No testing or treatment” rather than $198 when compared
to Amantadine. Omitting Amantadine would not give a true picture of the
incremental value of zanamivir, that is, it would not tell us how much more
would be paid for the gains in effectiveness seen with zanamivir compared to all
other reasonable strategies [8].

Similar considerations apply to the average cost-effectiveness ratio, here the
cost divided by the illness days avoided; for example, the average cost-effective-
ness ratio for zanamivir is $137.1/0.74 or $185.27 per illness day avoided. When
comparing mutually exclusive strategies, as we are in this example, the absence
of incremental comparisons between strategies in the average cost-effectiveness
calculation does not allow for elimination of dominated strategies or for calcu-
lation of incremental gains and costs between strategies [8]. The average cost-
effectiveness ratio is useful, however, in the evaluation of mutually compatible
programs that are subject to a budget constraint, where programs are ranked,
lowest to highest, by average cost-effectiveness ratio, then funded in that order
until the budget is exhausted (see Chapter 8 on Budgetary Impact Analysis).
Use of the average cost-effectiveness ratio in this fashion would maximize the
health benefits for a given monetary expenditure; however, its use for this pur-
pose has been largely theoretical to this point.

7.4.2 SENSITIVITY ANALYSIS

The next step in a CEA is the performance of sensitivity analyses. Typically, uni-
variate, or one-way, sensitivity analyses are performed on parameter values, and
further multiple parameter sensitivity analyses may also be performed. Further
consideration of sensitivity analysis issues can be found in Chapter 13.

7.4.3 INTERPRETATION OF CEA RESULTS

To reiterate a prior point, CEA hinges on comparisons between strategies. A
single option alone cannot be cost-effective; options can only be cost-effective
compared to other options. The relative cost-effectiveness of one option com-
pared to another is subject to interpretation and, perhaps as a result, the term
“cost-effective” has been misused (although perhaps less so now than in the
past, due to increasing familiarity with the true meaning of the term) [15].
Cost-effective does not necessarily mean cost saving. New health programs that
are less costly and more effective than existing programs are clearly good buys,
but a new program that costs more and is more effective than the existing pro-
gram can be cost-effective without costs being saved, depending on how much
is willing to be paid for a given health benefit. Cost-effective has also been
incorrectly used to mean cost saving when no determination of effectiveness dif-
ferences between options has been performed: buying health insurance from
one carrier that costs less than insurance from another carrier is not making a
cost-effective decision when there is no comparison of health benefits between
insurance plans; this would be a cost-minimisation evaluation (see Chapter 6).
Similarly, “cost-effective” has been misused to mean “effective” when there is
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no cost comparison. The correct meaning of “cost-effective” is that a program
or a strategy is worth the added cost because of the benefit it adds compared to
other interventions. The application of the method requires a determination of
the value of healthcare benefits as well as costs.

Returning to our influenza example, how can one interpret the ICERs of
the amantadine and zanamivir strategies? One of the first steps in interpreting
CEAs is to understand what cost-effectiveness cannot do. It cannot make the
“correct” choice; instead, it provides an analysis of the consequences of each
choice. CEA is not designed to address the social, political, or legal issues that
might arise from a medical decision. Thus, if differing strategies involve ques-
tions of equity, social justice, legal responsibilities, or public opinion that need
to be weighed in making a medical decision, consideration of cost-effective-
ness, more than strategy, is necessary. Cost-effectiveness is one of many aspects
of a decision to be considered and interpreted by decision makers, be they
physicians in the care of an individual patient or health policy makers in a
broader population-based medical care context [8].

Let us assume for now that sociopolitical issues are similar between our
example strategies, allowing us to concentrate on the cost-effectiveness results as
a major basis for the decision. In this case the question is: which strategy
should we choose based on the ICERs calculated for each strategy? Or more
bluntly, which strategy is the most “cost-effective?” The answer depends on the
willingness-to-pay per unit health outcome (here, per illness day avoided). If the
willingness-to-pay is less than $9 per illness day avoided, then “No testing or
treatment” would be chosen, since the ICERs of the other strategies are greater
than or equal to $9 per illness day. If willingness-to-pay thresholds are higher,
other strategies would be chosen: amantadine is chosen if the willingness-to-pay
is $9–$197, and zanamivir is chosen if the willingness-to-pay is greater than or
equal to $198 per illness day avoided.

How, then, is a reasonable cost-effectiveness willingness-to-pay threshold
determined? This is a difficult question with no clear answer at this point, compli-
cated by the many possible effectiveness values (life years gained, lives saved, ill-
ness days avoided, etc.) that could be considered. Cost-effectiveness comparisons
between interventions using a common effectiveness measure can be useful in
gaining a sense of an intervention’s relative value. For example, if Treatment x for
Disease X costs $100 per illness day prevented and is considered economically
reasonable while Treatment y for Disease Y costs $500 per illness day avoided
and is considered too expensive, then Treatment z for Disease Z costing $550 per
illness day prevented might also be considered too expensive. However, the use-
fulness of this comparison depends upon the similarity of illness days between
Diseases X, Y, and Z. If Disease Z is worse than X or Y, then there might be a
higher willingness-to-pay threshold to avoid a more severe illness day from Dis-
ease Z than to avoid a more moderate illness day due to X or Y.

Sensitivity analysis may also be useful in the interpretation of results. If
variation of analysis parameter values does not change the conclusion drawn
from the base case analysis results, the analysis is said to be “robust,” and
increases the confidence in analysis results. Analyses that are not robust,
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where conclusions may change with variation of one or more parameter
values, are termed “sensitive to variation,” and their results are viewed with
less confidence. Depending on the data used in the analysis, this confidence or
uncertainty can be quantified through the development of confidence intervals
for cost-effectiveness ratios in empiric data sets or the use of probabilistic sen-
sitivity analysis and acceptability curves when empiric data sets are not avail-
able. These issues are covered in greater detail in Chapter 13.

A number of other factors can make interpretation of CEAs challenging.
Differences in analysis results can be due to methodologic differences between
analyses. CEA results are often dependent on the perspective, time horizon,
and assumptions used in the analysis and, unless these factors are well aligned
between analyses, discordant results can arise based solely on these technical
differences. Analyses using effectiveness values that are very specific to the
medical scenario being examined, such as deep venous thrombosis prevented
or lumbar discectomies avoided, may have few similar analyses available for
comparison, making interpretation of their results challenging. Even if ana-
lyses with similar effectiveness values are available, their results could be diffi-
cult to compare to those of interventions for other disease processes using
other effectiveness measures, thus limiting their comparability and interpret-
ability. In these cases, a common effectiveness measure would facilitate cost-
effectiveness comparisons over a broad spectrum of medical interventions. The
use of quality of life utilities and QALYs in cost-utility analysis (as discussed
in Chapter 4), along with methodologic recommendations to standardize ana-
lysis practices, such as those of the US Panel on Cost-Effectiveness in Health
and Medicine [8, 10], is largely motivated by the need to facilitate such com-
parisons, and has resulted in resources, such as the online CEA Registry from
Tufts University [16], to make direct comparisons possible .

7.5 SUMMARY

CEAs compare medical intervention strategies through the calculation of the
ICER, a measure of the cost of changes in health outcomes. These analyses can
be performed on clinical trial data when information on both costs and effective-
ness is available or, more commonly, using decision analysis models to synthesize
data from many sources. Interpretation of CEA results can be challenging due to
the variety of health outcomes that can be used as the effectiveness term in these
analyses and due to the absence of a definitive criterion for “cost-effective.” A
subset of CEA, cost-utility analysis, attempts to make interpretation of results
less difficult using a common effectiveness term, the QALY.
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8.1 INTRODUCTION

A comprehensive economic evaluation for a new medicine or technology should
include a cost-effectiveness analysis (CEA), estimated for the duration of the condi-
tion, whose purpose is to determine the efficiency of the new intervention for an
individual or a disease cohort. The evaluation should also include a budget impact
analysis (BIA), sometimes referred to as a budget impact model (BIM). The pur-
pose of a BIA is to determine the impact of the decision to use a new intervention
on annual healthcare costs for a health plan or a country population for each year
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after the introduction of the intervention. Both CEAs and BIAs must include infor-
mation about the condition for which the new intervention is indicated, the types
of patients likely to use the new intervention, how the use of the new intervention
will affect the use of alternative interventions, and how the new intervention will
change other condition-related costs. Specifically, a CEA takes an incidence per-
spective and estimates the changes in lifetime costs and health outcomes for
a representative individual or a cohort of individuals who initiate treatment with
the new intervention and compares these costs and outcomes to a similar individual
or cohort initiating treatment with an alternative intervention. In contrast, a BIA
takes a prevalence perspective and estimates the total changes in annual healthcare
costs for the entire population of individuals who have the condition of interest;
total changes are reported for each year that the new intervention is introduced
into the treatment mix, typically 3–5 years. The BIA is the topic of this chapter.

8.2 GUIDELINES FOR BUDGET IMPACT ANALYSES

In 2007, Mauskopf et al. presented the first international guidelines for BIAs [1].
In 2014, Sullivan et al. updated these guidelines [2]. Although both sets of guide-
lines provide a detailed insight into all issues related to the conduct and reporting
of BIAs, local implementation is not straightforward, and the guidelines leave
room for several interpretations and methodological options regarding the differ-
ent aspects of BIA. In addition, reviews of published BIAs in Europe [3] and in
the United States (US) [4] have shown that these guidelines are often not fol-
lowed. Furthermore, recent studies that reviewed estimated budget impacts
before adoption of a new intervention showed that these estimates both under-
estimated and overestimated the observed budget impact after adoption of the
intervention [5–7]. In this chapter, we attempt to establish a set of clear standards
for improving the consistency of analyses and the usefulness of the results to the
budget holder. This chapter aims to serve both those developing BIAs as well as
those reviewing and making decisions based on these BIAs. A BIA is defined
here as the best possible estimation each year of the financial consequences to the
budget holder as a result of the adoption and diffusion of a new pharmaceutical
drug or medical device over a well-defined time period. In the remainder of the
chapter, we often refer to drugs, but the same principles apply to devices.

8.2.1 PERSPECTIVE AND TARGET AUDIENCE

A budget impact of a new pharmaceutical drug or medical device should consider
the perspective of the budget holder. This could be a national health insurer,
a national health service, a private insurer, a hospital manager, and so on (see
Chapter 1 for further details about the perspective).

8.2.2 OUTCOME

Given the BIA’s perspective, all estimated increased expenses and cost savings
must relate to the annual total expenditures on healthcare services for the con-
dition of interest. A narrower perspective, related to changes in spending on
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individual drugs or to the total pharmaceutical spending for the condition of
interest, can also be shown; however, for all BIAs the impact on total spending
for all healthcare services for the condition of interest is the primary outcome,
provided sufficient data are available to show the impact on all condition-related
costs. It is also recommended that the BIA contain information on the annual
health impacts for the eligible population, if available, since these impacts will be
needed to estimate changes in condition-related costs, as recommended in the
guidelines from the International Society for Pharmacoeconomics and Outcomes
Research [2]. Health impacts may be complications avoided, cured patients,
deaths avoided, or other “hard” endpoints occurring each year after the introduc-
tion of the new intervention. The use of this information gives the decision maker
not only an estimate of the financial impact but also an estimate of how many
units of health, either condition-specific or generic, can be obtained in the eligible
population each year during the BIM’s time horizon. If health impacts from the
new intervention are observed only after the end of the BIM’s time horizon, these
interventions can still be included in the results summary but should be presented
without estimates of their financial impacts and without applying these financial
impacts to expenditures observed during the model time horizon.

8.2.3 HEALTH CONDITION AND TARGET POPULATION

The BIA addresses the impact of the use of a new drug in a well-defined health
condition and population eligible for the new intervention. Therefore, a complete
and detailed description of the health condition, its current treatment, and related
outcomes is essential. The eligible population should include all patients who are
diagnosed with the condition of interest and who are indicated for the new drug
and, hence, who might be given this new intervention in the time horizon of inter-
est (see Section 8.2.5 for further guidance for the time horizon).

The eligible population must be defined starting from the approved marketing
indication and, possibly, narrowed down to the population for which reimburse-
ment is approved. Note that this eligible population should include patients newly
diagnosed and/or newly eligible for the new intervention. Patients in the prevalent
population must also be included in a BIA for the treatment of a chronic disease if
these patients are currently being treated and are eligible to switch to the new inter-
vention. For example, if a new treatment is introduced for depression, two popula-
tions must be included in the BIA: (1) incident populations, that is, those whose
diagnosis or treatment history makes them newly eligible for the new treatment
each year of the model time horizon, and (2) a prevalent population, that is,
patients diagnosed and currently being treated who would have become eligible for
the new intervention in previous years and who may consider switching to the new
intervention, especially if they are not being successfully treated with the current
interventions.

Moreover, in some disease areas, there may be patients with a condition who
currently have no adequate treatment option and therefore are not receiving any
treatment. The introduction of a new drug enables them to be successfully treated
(for instance, patients whose rheumatoid arthritis has been insufficiently controlled
for several months or years). This is called induced demand, which means that the
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new drug may lead to additional patients entering the treated population when
a new drug is approved; therefore, this population should be considered in estimat-
ing the eligible population size.

Regardless of induced demand, the eligible population may evolve over
time for conditions with an increasing or a decreasing temporal incidence and/
or prevalence; an evolving population can occur because of changes in mortal-
ity or morbidity rates with the new intervention or because of changes in the
age distribution or size of the population of interest. These changes must also
be considered in estimating eligible population size.

Within the eligible population, it is recommended that subpopulations,
determined by patient characteristics or condition severity, be considered if
there is evidence that such subpopulations are associated with different levels
of effectiveness of the new drug or with different cost consequences.

Finally, possible off-label use of the new drug must be discussed, and its
magnitude estimated and considered in the BIA.

8.2.4 THE INTERVENTION

The new drug must be fully described in terms of its efficacy, effectiveness, adverse
events, and convenience of use. This description must focus on a comparison of
these measures to those of the drugs and nondrug treatments that may be replaced
by the new drug (see Section 8.2.6 for further guidance about comparators).

8.2.5 TIME HORIZON

The time horizon must meet the needs of the decision maker. Therefore, it is
recommended that a time horizon of 3–5 years be applied as a base case. Further,
it is mandatory to show a flow of financial consequences on a yearly basis, that is,
the year-by-year impact, as well as the total budget impact, over 3–5 years must
be shown. It is possible to have longer time horizons in BIAs, for example, for
treatments of chronic diseases, but we recommend using a time horizon that
allows outcomes to be validated by clinical trial or credible observational data.

8.2.6 INTERVENTION MIX

A BIA must predict how a change in the current mix of drugs and other therapies
used to treat a particular health condition will impact the flow of spending on
that condition. Hence, the comparison must be made between the current inter-
vention mix and the new intervention mix (i.e., a mix with the new drug included)
that can be used in the population eligible for treatment with the new interven-
tion. The current intervention mix consists of those drugs (and possibly other
treatments, such as surgery) that are currently used in the population eligible for
the new treatment and that may be replaced by the new drug. In case there are
numerous current drugs and other treatments currently being used, it is possible
to consider only a subset of the current interventions, focusing on those most
likely to be replaced by the new intervention.
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In order to estimate the new intervention mix, the market penetration of the
new drug must first be estimated. Market penetration should be based on evi-
dence such as experience in other countries (if the drug was already approved
there) or experience with a similar drug in the same disease area that was
launched earlier in the same setting. Evidence from market research studies can
also be used. If market penetration is based on market research, the study’s
report, with methods and results of the study, must be added to the appendix of
the budget impact report. In addition to the expected market penetration of the
new drug over the model time horizon, the extent to which the new drug will be
added to the mix or replace each of the current drugs and other treatments must
be estimated. Thus, the new intervention mix should consist of the new drug plus
the remix of the current drugs and treatments.

The model must also allow for evolution of both the current and new inter-
vention mixes as the penetration of the new treatment changes, as well as any
expected changes in the current intervention mix that may occur over the model
time horizon. For example, the expected entry of generic products for currently
branded products may cause changes over time in the evolution of the interven-
tion mix without and with the new intervention and should be accounted for in
the BIM. Finally, note that off-label use (mentioned in Section 8.2.3) may occur
in both the current treatment mix and the new treatment mix.

8.2.7 MODEL STRUCTURE AND STRUCTURAL ASSUMPTIONS

A BIA requires a combination of data from many different data sources into
a cost-calculator or decision-analytic model structure. For example, if the avail-
able clinical trials do not describe the economic and health consequences of
reaching an endpoint, other data sources must be consulted in order to obtain
this type of information. In a BIM, information and data from these different
sources should be combined in a manner that is similar to that used in a CEA
(see Chapters 4 and 7 for further guidance). The BIM should be as simple as pos-
sible but must be a credible reflection of the health condition, its natural history,
and its consequences (as far as these consequences are affected by the new drug)
for each year after the new drug is introduced to the market. The BIM’s clinical
and economic assumptions should be consistent with the CEA, if there is one.

It is important to note, however, that the complexity of the BIM, and its align-
ment with the CEA, will depend on the type of health condition (acute health con-
ditions and self-limiting health conditions may be associated with simpler models
than chronic conditions or acute conditions with sequelae) and the type of inter-
vention (preventive, curative, palliative, one time, ongoing, or periodic). The final
model structure must consider these aspects and be justified accordingly. A BIM
must be an open cohort model, that is, the BIM should be constructed so that indi-
viduals can enter the model as they become eligible for the new treatment or leave
the population as they are cured, lose eligibility for the treatment, or die.

Figures 8.1–8.4 show examples of model structures for different types of health
conditions. Figure 8.1 shows a model structure for a new antiviral drug treatment
for influenza, an acute condition; the structure is based on data from clinical trials
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on the reduction in the number of symptom days and a reduction in hospitalization
rates. Figure 8.2 shows a model structure for a new drug treatment for relapsing–
remitting multiple sclerosis, a chronic condition; in this model, the treatment is
assumed not to impact either mortality or disease progression within the model
time horizon. However, the model includes a reduction in annual relapse rates
based on data from clinical trials [8]. Figure 8.3 shows a model structure for systolic
congestive heart failure for which add-on drug treatment has been shown in
a clinical trial to reduce both hospitalization and mortality rates [9]. These three
models can be programmed as simple cost-calculator models, which is the preferred

FIGURE 8.1 Budget impact model: influenza.
1 Hospital stays, physician visits, and symptom days were estimated as rates without
new antiviral drug from clinical trial data.
2 The number of health outcomes with antiviral available can change over the model
time horizon as uptake of the antiviral increases.
3 The number of antiviral prescriptions can vary over the model time horizon with
uptake; the number of antibiotic prescriptions with and without antiviral was estimated
using percentages from the clinical trial.
4 Healthcare and drug costs were calculated by applying unit costs for each resource to
the units of the resource used; the difference in symptom days can also be calculated
and presented.
Source: Based on unpublished study.
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approach when the condition and intervention impact allow for this approach.
However, simplifying assumptions may be needed, such as assuming that the
impact of the new drug on disease progression is similar to the drugs in the current
treatment mix and/or the new drug does not affect disease-stage treatment costs
during the model time horizon (e.g., see Figure 8.2).

Figure 8.4 shows a Markov model structure for a new drug regimen for individ-
uals with highly drug-resistant human immunodeficiency virus infection who are
failing current antiviral combination regimens and for whom the new drug regimen
has been shown to reduce mortality rates and to slow disease progression within the
model time horizon. The Markov model structure used for the CEA of such new

FIGURE 8.2 Budget impact model: multiple sclerosis.
1Assume no impact of new drug on mortality during model time horizon
2Treatment mix and relapses might change over model time horizon, for example with
generic entry
3Treatment mix and relapses will change over model time horizon as uptake of new
drug increases
4Number of relapses estimated as a weighted average of relapse rates for each drug in
the treatment mix derived using a mixed treatment comparison analysis
5Health care and drug costs calculated by applying unit costs for each resource to the
units of the resource used; difference in number of relapses can also be presented
Source: Based on Dorman et al. [8].
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regimens was converted to a BIM by running the Markov model with the starting
prevalent population size and CD4 cell-count distribution and allowing a new
incident cohort to enter the model each year with a different CD4 cell-count dis-
tribution [10]. The model can be run both with and without the new drug regimen
included in the treatment mix, and the uptake of the new drug regimen can be
allowed to change each year for the incident populations. In the case of HIV
infection, the efficacy of the new drug regimen in the prevalent population should
be allowed to differ from the efficacy of the new drug regimen in the incident
cohorts because of greater drug resistance in the prevalent population. Once the
model has been run with and without the new drug regimen included in the

FIGURE 8.3 Budget impact model: congestive heart failure.
1 Prevalence of patients with congestive heart failure will increase over model time horizon
with new add-on drug treatment because the clinical trial of add-on therapy showed reduced
mortality rate.
2 Hospital stay and death estimates were taken from clinical trial current treatment arm;
treatment mix without new drug assumed to remain constant over the model time horizon.
3 Hospital stays and deaths will change over model time horizon as uptake of the new
add-on drug increases.
4 Healthcare and drug costs were calculated by applying unit costs for each resource
to the units of the resource used; the difference in the number of hospital stays and
deaths can also be presented.
Source: Based on Borer et al. [9].
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treatment mix, the difference in annual population costs can be presented for
each year after the introduction of the new drug regimen.

The BIM must be fully transparent. This means that, along with a model
flow diagram, all the data inputs must be clearly presented, together with their
sources and their ranges of uncertainty (see Section 8.3 for further guidance
about reporting and Chapter 13 about sensitivity analysis). In addition, the
model should be developed in a readily accessible software program; an elec-
tronic copy of the model, where possible, should be delivered to the decision
maker to allow him or her to run scenarios that reflect their population’s char-
acteristics, health plan practices, and costs.

FIGURE 8.4 Markov budget impact model: HIV.
HIV = human immunodeficiency virus. 1 Patients can transition from any health state
to death at any time but at higher rates, depending on the CD4 cell-count range.
2 Assumed the distribution among the CD4 health states of the prevalent population
with highly resistant HIV1 infection remained constant over model time horizon with-
out the new intervention at the distribution observed for those individuals entering the
clinical trial for the new intervention. Distribution among the CD4 health states of the
prevalent population with highly resistant HIV1 infection will change over the model
time horizon with new, more effective interventions. The size of the prevalent popula-
tion with highly resistant HIV1 infection with the new intervention will increase over
the model time horizon with the decrease in mortality rates. To estimate the change in
drug costs, subtract the estimated costs of the mix of drugs used without the new inter-
ventions from the estimated costs of the mix of drugs used with the new intervention,
accounting for both changes in drug costs per person and changes in the size of the
prevalent population. To estimate the impact on other healthcare costs of the new
intervention, compute the costs for the prevalent and incident populations with and
without the new interventions by multiplying the number of individuals in each CD4
range with and without the new intervention by the average annual healthcare costs
(not including drug costs) in that range.
Source: Based on Mauskopf [10].
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8.2.8 DATA SOURCES

A BIA is meant to provide a range of predictions, based on realistic estimates
of the input parameter values in the model. In order to allow for the verifica-
tion of the reliability of the data sources, each data input in the model must
be documented by a clear reference to the data source from which the input
was obtained. Moreover, the characteristics of each data source must be
described. This is essential because the decision maker must be able to verify
whether the information in the data source is relevant to the considered eligible
population.

The primary data sources should be published clinical trial estimates and
studies of efficacy and safety for comparators. Other data sources include
population statistical information; healthcare databases; patient chart reviews;
observational data; and, if data gaps are still present despite all the above
sources, expert opinion (see Chapter 5 for further guidance about data
sources). The BIA’s developers can build a more credible BIA if they are able
to access the budget-holder’s data on patient characteristics and condition
severity, current treatment patterns, and costs.

If assumptions about input data values are needed (which is often the
case), the assumptions must be realistic and justifiable, and their impact
should be tested in the sensitivity analysis (see Section 8.2.11 for further guid-
ance and Chapter 13 for guidance about sensitivity analysis results).

8.2.9 CALCULATIONS

As mentioned previously, the budget impact must be calculated on an annual
basis. For each year, the expenses associated with the current intervention mix
and the new intervention mix, as well as condition-related medical resource
use and costs associated with the current intervention mix and the new inter-
vention mix, must be calculated. From this information, the additional treat-
ment expenses due to the new intervention mix, the possible changes in
medical resource use, and the net budget impact can be calculated. These
should be reported for different scenarios (see Section 8.2.11 for further
guidance).

As the BIA deals with financial streams over time, it is not necessary to discount
the costs.

Note that costs and savings need to be condition- and treatment-related and
must be calculated by multiplying resource use (induced or avoided) by the unit
cost per resource item, which should reflect the cost or price paid from the per-
spective of the decision maker and should include discounts from the suppliers
and any co-pays made by the patients. The calculations should address the
impact of adherence and persistence with therapy on the cost and outcomes of
treatments to the extent that these data are available. It may be, however, that the
payer will bear the cost regardless (e.g., even if poorly adherent, the patient still
pays for the prescription).
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8.2.10 MODEL VALIDATION

The validity of the model (Eddy et al., 2012) must be assessed and the result of
this assessment must be reported. The validation involves the following steps.

8.2.10.1 Face Validity
It is important to confirm with budget holders that the model structure,
assumptions, and input parameter values that have been used for the base
case and alternative scenarios are a good representation of the changes in con-
dition outcomes and budget-holder costs.

8.2.10.2 Internal Validity
A peer reviewer should have the chance to examine the data input, sources, and
calculations of the model, to ensure that there are no transcription or calculation
errors. This can be facilitated by providing the peer reviewer with an electronic
version of the model.

8.2.10.3 External Validity
The closer the model’s clinical predictions approach reality, the greater the val-
idity of the results. Obviously, this cannot yet be examined for the branch of
the model with the new intervention, but the model results can be compared
to budget-holder data for the current treatment mix.

8.2.11 REPORTING OF THE RESULTS

The BIA model report should follow the CHEERS guidelines for reporting
economic models [11] and should have the following elements: a complete
and transparent description of the model structure, including a flow diagram
and details of all model calculations; a listing of all model structural assump-
tions and their rationale; and a table presenting all input parameter values,
data sources, and derivations, if required, for the model. The main results of
the BIA can be presented for a base-case estimate, using a credible set of input
parameter values, but should also include a comprehensive set of sensitivity
analyses based on plausible alternative scenarios. The following are examples
of such alternative scenarios and assumptions: different patient age distribu-
tions or disease or condition severity mixes that may be expected in various
health plans; market penetration for the new intervention; changes in current
interventions when the new intervention is introduced; change in efficacy and
adverse events with the new intervention in the mix; and drug and other
resource costs. In addition, the model should be designed to be interactive so
that the user can run scenarios that reflect the budget holder’s own decision
context.

Using these guidelines, the quality and uniformity of BIAs will improve.
More specific instructions on how to perform a budget impact analysis can be
found in Mauskopf et al. [12]. These guidelines and instructions, however, do
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not inform the decision about what is or is not an acceptable budget impact.
These issues are briefly discussed in Section 8.3.

8.3 BUDGET IMPACT ANALYSIS AND AFFORDABILITY

An introduction of a new product that is very cost-effective at the individual
patient level may result in a large annual budgetary impact at the population
level if there is a large eligible population or if the price of the new intervention is
very high (e.g., a cure for a chronic condition or genetic disease), and the impact
may play a part in policy decisions about treatment guidelines and reimburse-
ment. For example, decisions about the addition of new drugs to the national for-
mulary in Australia are based on expected budget impact as well as the cost-
effectiveness of new interventions [13], while the United Kingdom’s (UK’s)
National Institute for Health and Care Excellence (NICE) bases its recommenda-
tions for reimbursement only on cost-effectiveness results [14]. However, NICE
frequently examines the cost-effectiveness of treatment for different patient sub-
groups defined by condition severity or treatment history or other patient charac-
teristics to ensure that treatment for all subgroups is cost-effective. NICE can
also negotiate price discounts when the budget impact of treatment for their
recommended reimbursed population is very high [14]. NICE produces costing
templates that present expected budget impacts and that are intended to be used
as guidance for budget holders implementing their reimbursement recommenda-
tions. These costing templates are typically designed as cost calculators using
Microsoft Excel spreadsheet software and have drug- and condition-related costs,
provided there are strong clinical trial or observational data to support the esti-
mates of changes in condition-related costs. To address concerns about affordabil-
ity of new drugs, in April 2017, NICE announced that the National Health
Service (NHS) and NICE were introducing a “budget impact test” [15]. The test
works in the following way: any new intervention with an expected annual net
budget impact in any of the first 3 years of use of more than £20 million will trig-
ger a commercial discussion between NHS England and the company submitting
the intervention to NICE. The discussion will explore ways to reduce the budget
impact through changes in price or alternative payment mechanisms. If agree-
ment is not reached, NICE recommendations for use will be allowed to be
phased in over a longer time period than the current 90 days.

This chapter has focused on how to estimate the budget impact of a single new
innovative drug or other healthcare technology. However, payers are also concerned
about the aggregate impact of all the new interventions in healthcare that are mar-
keted each year, since this is important for budget planning, premium setting, and/
or tax increases. To the extent that information can be provided to budget holders
with aggregate estimates of the budget impact of all the new interventions entering
the market in upcoming years, this would be very helpful for financial planning.

The independent Institute for Clinical and Economic Review (ICER) in the
United States has considered the aggregate impact of new interventions in
their value framework; the framework combines a CEA and other intangible
factors to determine “care value” and adds a consideration of the budget
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impact to determine health system value for new interventions [16]. The
methods initially used by ICER to estimate budget impact for individual inter-
ventions were similar to those described in this chapter, although the rate of
uptake of the new drug was not evidence based. Rather, the eligible popula-
tion was estimated and unmanaged use by this population was assumed over
a 5-year time horizon; the costs associated with changes in the treatment mix
and in condition-related costs were estimated to determine the likely budget
impact. However, using this approach, both ICER and outside groups [6] have
determined that the early budget impact estimates made by ICER were higher
than those actually observed after the product entered the market. Two of the
main causes of higher budget impact estimates were overestimates of the prod-
uct’s uptake and overestimates of the product prices using list prices. To
adjust for this overestimation, ICER now produces a range of budget impact
estimates based on a range of uptake for the eligible population and a range
of US health plan prices reflecting individual plan discounts.

Further, to ensure that the budget impacts of new interventions are affordable,
ICER relates the estimated budget impacts to a ceiling level that ICER
researchers believe is sustainable for new products coming to market. This ceiling
amount is computed each year, starting with estimates of the aggregate amount
by which total healthcare budgets can be increased, calculated by multiplying cur-
rent total healthcare costs by the US expected increase in gross domestic product
(GDP) plus 1%. This value was chosen to reflect realistic annual increases for
total healthcare costs each year in the United States. In order to translate this
figure into a value that would be of concern for an increase in a drug’s budget,
ICER multiplies the total increase in healthcare spending by the proportion of
that spending that is for drugs and then divides this amount by the average
number of new molecular entities entering the market each year (using data from
drug approvals over the last 2 years). This amount can be compared with the esti-
mated budget impact for each new product for each year, annualized over 5 years.
If the estimated budget impact for a new molecular entity at the payer’s price and
expected uptake is above this amount, ICER provides a warning to payers; this
warning from ICER may provide US payers with a negotiating tool for price
negotiations or restrictions on product use [17].

There is still a problem for decision makers if the aggregate budget impact
of all new products that are cost-effective at current thresholds is higher than
GDP plus 1% and price negotiations or restrictions on patient use are not suc-
cessful. How can these budget restrictions be met?

Cohen et al. stated that the economic and equity rationale for carrying out
BIAs is opportunity cost, or benefits forgone, measured in terms of utility or
equitable distribution by using resources in one way rather than another [18].
In other words, by choosing to use the budget in one way rather than another,
decision makers forego other opportunities to use the same resources. The
value of ICER’s approach is that it provides a way to estimate what should be
considered a large budgetary impact and what is a small one by allowing the
healthcare budget to grow by GDP plus 1% (as described previously). Austra-
lia and the United Kingdom have also placed what they consider to be a large
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budgetary-impact limit on their health technology assessment processes. How-
ever, this does not solve the problem of how to cope with a situation where the
budget impact of all the new interventions together exceeds what is considered
affordable within the health system.
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9.1 INTRODUCTION

. . . a formalization of common sense for decision problems which are
too complex for informal use of common sense.

(R. L. Keeney 1982, 806)

Keeney’s quote concisely captures the support that multicriteria decision ana-
lysis (MCDA) offers decision makers. Decisions can be complex, involving many
alternative courses of action, many criteria against which to evaluate these alter-
natives, uncertainty in the performance against these criteria, and conflicting
perspectives. Where this is the case, decision makers risk relying on simplifying
heuristics that cannot be guaranteed to reach the “right” decision. MCDA can
support decision makers facing such situations to make better, more transpar-
ent, and consistent decisions.

We begin by providing a brief introduction to MCDA in the context of
healthcare decisions. This is followed by a high-level description of the steps
involved in conducting an MCDA. Finally, we illustrate how to implement an
MCDA using the example of an individual’s choice of contraception.

9.2 MCDA – A BRIEF OVERVIEW

9.2.1 WHAT IS MCDA?

MCDA is a term used to denote a collection of approaches that allow one to for-
mally evaluate alternatives against a set of multiple, often conflicting, objectives,
from the perspective of individuals or groups of decision makers and where no
dominating course of action is evident [1]. As such, MCDA is a sociotechnical
process. It is designed around the social element of the decision, that is, engaging
stakeholders within the process, and the technical aspect of how the problem is
solved, that is, which method(s) and tool(s) is/are used. Regardless of the method(s)
used, the same sequence of steps is broadly used.

MCDA can aid decision making by providing away to structure deliberation,
facilitate knowledge transfer, promote better-quality discussions, and to transpar-
ently communicate the reasons for decisions [2]. Table 9.1 lists the key benefits of
MCDA.

9.2.2 USES OF MCDA

MCDA is a technique that has been widely applied in nonhealth contexts [3, 4].
More recently, there has been an increased interest in the applications of MCDA in
health [2, 5]. MCDA can be useful in supporting awide range of decisions, such as:
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• Pharmaceutical companies making decisions regarding their pipelines and
trial designs. For example, Allergan conducted an MCDA to support
decisions about investment in 59 assets across five therapeutic
areas [6].

• Marketing authorization: The Innovative Medicines Initiative Pharmacoe-
pidemiological Research on Outcomes of Therapeutics by a European
Consortium (IMI PROTECT) applied MCDA to support benefit–risk
assessment involved in marketing authorization decisions [7]. For other
examples, see Ho et al. [8] and European Medicines Agency [9–11]

• Reimbursement decisions: Examples of the use of MCDA to support
the evaluation of new medical technologies for reimbursement purposes
in Hungary [12], Italy [13], Germany [14], and Thailand [15].

• Resource allocation decisions: MCDA was used to support the Isle of
Wight Primary Care Trust’s allocation of resources across 21 interventions
spread across five health priority areas [16].

• Prescription and shared decision-making decisions: MCDA was used to
support the choice of colorectal cancer screening options [17].

9.3 IMPLEMENTING AN MCDA – AN OVERVIEW OF THE STEPS

Various guidelines for implementing MCDA are available [1, 18–20]; these
broadly agree on the sequence of steps as listed in Table 9.2. While the steps
are presented in a linear manner, they are often undertaken in an iterative
manner, refining the MCDA as learning is gained throughout the process.

9.3.1 STEP 1: PROBLEM STRUCTURING

The first step in implementing an MCDA is to define the decision problem. This
involves answering a number of questions, such as: What are the alternatives to
be evaluated? Who are the decision makers? What are their objectives? And what
type of decision do they have to make? The answer to the last question may be
that they need to rank alternatives.

TABLE 9.1

The Key Benefits of MCDA

Benefit Qualification

Completeness Ensuring that all relevant criteria are considered

Formal incorporation of
value judgments

Quantification of stakeholders’ value judgments and combination
with performance measurement

Understanding Fostering a shared understanding of a decision problem and identifying
areas of important disagreement

Transparency Forming a transparent link between judgments and decisions
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Another important question is whether the decision makers want to apply
their own preference in the evaluation or to elicit the preferences of another
stakeholder group. For instance, regulators may want to understand patients’
preferences, or a reimbursement agency may want to know the preferences of
the general population.

A definition of the decision problem can be provided by reviewing documents
such as the mission statement of the organization the decision makers represent
or the rationale for previous decisions they have made. It is also recommended
that the decision makers themselves be consulted. Other expert input can also be
useful, such as key opinion leaders and/or patient advocacy groups.

9.3.2 STEP 2: CRITERIA SELECTION

Different decisions will involve different sets of objectives and, thus, evaluation
criteria. For instance, a prescription decision may consider clinical outcomes
as well as convenience criteria, such as the mode of administration and loca-
tion of getting a treatment. A resource allocation decision may consider
a broader set of criteria, such as equity and budget impact.

Two approaches can be used to generate the list of criteria to include in the
MCDA:value-focused thinking (also called top-down approach) and alternative
focused thinking (bottom-up approach). The first approach helps identify fun-
damental objectives and further decomposes them into subobjectives. The
second approach is driven by the existing alternatives and their distinguishing
characteristics to articulate objectives [21, 22]. While there are strong arguments
for using value-focused thinking [22], research also shows that individuals may

TABLE 9.2

MCDA Steps

Step Description

Step 1. Problem structuring

• Agree on a shared definition of the problem

Step 2: Criteria selection

• Identify criteria important to decision makers

Step 3: Determining the performance of alternatives against criteria

• Gather data to measure performance against each outcome

Step 4: Determining the scores and weights – estimating the values of the outcomes

• Evaluate the scores of outcomes

• Elicit weights (trade-offs) representing the relative importance of the outcomes

Step 5: Evaluation and comparison of alternatives

• Evaluate alternatives

• Interpret and communicate the results

• Conduct a sensitivity analysis
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struggle to think about their fundamental objectives and may need prompts to
support articulating what they hope to achieve [23]. This could be done by some
preliminary research on existing studies as a starting point to guide the discus-
sions. Franco and Montibeller [21] provide a comprehensive list of tools for gen-
erating objectives.

The output from the review can then be validated and refined through discus-
sions with the stakeholders. In contexts where there are numerous stakeholders
with differing technical backgrounds, facilitated decision-conferencing workshops
can be useful [6].

Once these steps have been conducted, a long list of concepts would have been
gathered. In many cases this stage will generate too many criteria to be incorpor-
ated into the MCDA. There is no rule as to how many criteria to include
although as few criteria should be included as are requisite with the decision.
Identifying this number requires making trade-offs between increasing the valid-
ity of the decision by using a more complete set of criteria versus the resulting
fatigue from the increased length of the decision task [24]. MCDAs in healthcare
use between 3 and 19 criteria, with an average of 8.2 [2].

To narrow down the criteria, it is helpful to keep in mind the desirable proper-
ties of criteria sets, described in Table 9.3. These will depend on the form of the
MCDA aggregation function adopted (see step 5). The most commonly adopted
aggregation function in healthcare is an additive model (also referred to as
“weighted sum model” or “additive multiattribute value model”). In this model,
a numerical score for each alternative on a given criterion is multiplied by the
relative weight for the criterion and then summed to get a “total score” for each
alternative. While simple to construct and communicate, additive models require
adherence to certain criteria set properties, such as preference independence, that
is, that the preference for a criterion can be stated without knowing how an inter-
vention performs on another criterion.

TABLE 9.3

Desirable Properties of Criteria [1]

Properties Description

Unambiguous A clear relationship exists between consequences and descriptions of
consequences using the criteria.

Understandable Consequences and value trade-offs made using the attribute can readily be
understood and clearly communicated.

Direct The criteria levels directly describe the consequences of interest.

Operational In practice, information to describe consequences can be obtained and value
trade-offs can reasonably be made.

Comprehensive The criteria levels cover the range of possible consequences for the corresponding
objective and value judgments implicit in the criterion are reasonable.

Preferential
independence

How much one cares about the performance of an intervention on a criterion
should optimally not depend on its performance on other criteria
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A common example of preference dependence is a patient’s preference for
the frequency of administration depending on the mode of administration:
preference for the frequency of administration will depend on whether the
treatment is administered orally or via injection. Where preference dependence
exists, this can be dealt with by restructuring criteria, such as combining the
mode and frequency of administration into a single criterion.

To facilitate the application of criteria set properties, the concepts can be
organized into groups with the purpose of extracting the essence of what mat-
ters to the decision makers. Problem structuring methods, including cognitive
maps and strategic options development and analysis (SODA) maps, can be
used to achieve this [25, 26] and the resulting criteria can further be organized
into a value tree [21, 27]. This exercise is not trivial and will require iterations
to arrive at a final list of criteria.

The definition of criteria should consider the types of measurements that
are available [28]:

• Direct or natural measurement – Whenever possible, this type of meas-
urement is favored as it has a common understanding and directly meas-
ures the criterion in question.

• Proxy measurement or indirect measurement – Where direct measures
are not available, proxies may be required. For example, distance to hos-
pital may be used instead of travel time. An example might be using
“commute time” when measuring the distance to receive a treatment.

• Constructed scale – In the absence of direct or proxy measures, it may
be necessary to construct a scale.

9.3.3 STEP 3: DETERMINING THE PERFORMANCE OF ALTERNATIVES AGAINST CRITERIA

Data to measure the performance of alternatives against criteria can be collected
from a range of sources, including trials, observational studies, systematic reviews,
and expert opinion. Existing standards for assessing the quality of evidence, such
as the Cochrane Risk of Bias tool [29], should be applied.

It is helpful to organize the data in a performance matrix or effects table
[10] (as in Table 9.4).

TABLE 9.4

Effects Table

Outcome Time
Point

Unit
(Scale)

Intervention 1
(Mean, LCI-UCI)

Intervention 2
(Mean, LCI-UCI)

Min1 Max1

Outcome 1

Outcome 2

Outcome 3

Outcome 4

1Min and Max denote the range of outcomes between which the interventions perform.
LCI = lower confidence interal; UCI = upper confidence interval.

158 Pharmacoeconomics



9.3.4 STEP 4: DETERMINING THE SCORES AND WEIGHTS – ESTIMATING THE

VALUES OF THE OUTCOMES

Aggregating multiple criteria requires that they be translated onto a single
scale. This is undertaken using scores and weights:

• Scores: The relative value of changes within a criterion. For example,
is a weight loss from 30 to 25 lbs valued the same as a weight loss
from 25 to 20 lbs? These are also referred to as partial values, which
can be displayed in a value function.

• Weights: The relative value of changes on different criteria, or the
trade-offs between criteria. For example, how much weight loss would
be required to offset an increase in the risk of death?

Eliciting scores and weights from stakeholders can be done using numerous
methods, such as the following:

• Stated preference methods, for example, discrete choice experiments
[30–32]

• Pairwise comparison, such as the analytical hierarchy process (AHP)
[33] or measuring attractiveness by a categorical based evaluation
technique (MACBETH) [34]

• Swing weighting method and the bisection method [4]
• Additional methods (see review in Marsh et al. [2, 35])

The selection of the appropriate elicitation methods will depend on the following:

• The sample size achievable
• The number and complexity of the attributes
• The nature of preferences, that is, strength and homogeneity

Further guidance on the selection and implementation of scoring and weighting
methods is available [36–40].

9.3.5 STEP 5: EVALUATION AND COMPARISON OF ALTERNATIVES

9.3.6 STEP 5.A: AGGREGATE THE DATA TO OBTAIN THE OVERALL VALUE

OF THE ALTERNATIVES

The evaluation of assets using an additive model is done in a relatively simple
manner – a weighted average is used to aggregate the weights and the scores. That
is, for each criterion, the weight on a criterion is multiplied by the score of an inter-
vention on that criterion. These weighted scores are then summed to give us the
overall value of an alternative. This can be done using a calculator, a spreadsheet,
or an existing software PROGRAM to support the elicitation of preferences and
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building a model. Though also valuable, undertaking a probabilistic sensitivity
analysis of an additive model will require more sophisticated methods.

Formally, this is done using the following formula to estimate this overall
value estimate [1, 41]:

U xð Þ ¼
Xn

i¼1
wi � ui xið Þ ð1Þ

where

• U xð Þ is the overall value of an intervention x;
• wi is the weight attached to criterion i;
• ui is the score function for criterion i~;
• xi is the performance of alternative x against criterion i.

This can be organized as in Table 9.5.

9.3.7 STEP 5.B: TESTING ASSUMPTIONS VIA SENSITIVITY ANALYSIS

Sensitivity analysis can be used to both validate and test the robustness of an
MCDA model.

Quality assurance: Sensitivity analysis can be used to test the behavior of the
model by simply changing some of the inputs to see if the results are as expected.
A typical test would consist of setting all the weights to 0 and checking that the
overall value of alternatives is also 0. Another typical test would consist of setting
the scores of a given alternative to 0 and then 100 to test if the overall value is 0
and 100, respectively.

Understanding the robustness of preference ranking: Sensitivity analysis can
be used to gain confidence in the ranking of preferred alternatives given that
inputs, both value judgments and the performance estimates, are uncertain.
Chapters 5 and 6 in Keeney and Raiffa [42] illustrate how to do this.

TABLE 9.5

Scores and Overall Values of Interventions

Interventions Criterion 1 Criterion 2 Criterion 3 Overall Value

Intervention a u1 xað Þ u2 xað Þ u3 xað Þ w1 � u1 xað Þ þ w2 � u2 xað Þ þ w3 � u3 xað Þ
Intervention b

Intervention c

Intervention d

Weights w1 w2 w3
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9.4 USING MCDA TO EVALUATE CONTRACEPTIVE METHODS –

AN ILLUSTRATION

This section illustrates the implementation of an MCDA using the example of
the decision aid model “My contraception tool” (referred to hereafter as MCT)
designed to support an individual’s choice of contraception [43]. The illustration
is applied from the perspective of a hypothetical individual, Rachael.

9.4.1 STEP 1: PROBLEM STRUCTURING

There are currently 15 available contraceptive methods (listed in Figure 9.1), each
with their different benefit–risk profiles, making the choice a complex one.

The MCT asks the stakeholder sociodemographic and medical history ques-
tions to determine potential contraindications for certain methods based on the
UK Medical Eligibility Criteria (UKMEC). For instance, given she is over 35
years old and a smoker, the combined pill is not an option for which Rachael
would be eligible.

9.4.2 STEP 2: CRITERIA SELECTION

To identify the criteria to include in the MCT, the authors conducted an initial
literature review, followed by three face-to-face group interviews of 15 women and
5 men. Based on this, 32 concepts were identified, in addition to avoidance of preg-
nancy and sexually transmitted infections (STIs) outlined in Table 9.6. Longer-
term events, such as increased risk of thrombosis and decreased risk of endometrial
and ovarian cancers, were excluded from the list due to their probabilities being so
low that they would be unlikely to affect the MCT’s recommendations.

Within the MCT tool, individuals are asked to choose between 1 and 4 criteria
of importance to them within the list of the short-term effects. The attributes that
matter most to them in this decision are listed as follows:

• Avoidance of pregnancy
• Avoidance of STI
• Less heavy periods
• Avoiding weight gain
• Avoiding mood changes
• Avoiding remembering to take contraception

9.4.3 STEP 3: DETERMINING THE PERFORMANCE OF ALTERNATIVES AGAINST CRITERIA

The authors of the tool obtained the performance of alternatives from the
Faculty of Sexual & Reproductive Healthcare guidelines, relevant Cochrane
reviews, or clinical guidance when no performance estimates were available.
The evidence used in the MCT was reviewed by a clinical advisor [43].

For illustration, the description of the performances of some of the contracep-
tives available for Rachael is listed in Table 9.7. In the case of the risk of pregnancy,
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two rows of data are available, that is, with the perfect use of the contraceptive and
with its typical use. This is a source of uncertainty which can be tested.

9.4.4 STEP 4: DETERMINING THE SCORES AND WEIGHTS – ESTIMATING

THE VALUES OF THE OUTCOMES

9.4.4.1 Determining the Scores
The MCT model assumes that value functions for the clinical criteria are linear,
in other words, that Rachael values each incremental added effect equally. To
determine the scores for the criteria relating to the inconvenience of the differ-
ent methods (such as avoiding going to a clinic, relying on a partner, loss of
sensation, and remembering to take contraception), Rachael would be asked to
provide her own ratings, on a scale from 0 to 1, of how bothersome the criteria
level would be. For example, if remembering to take or use a contraceptive
method was deemed as “extremely difficult,” it is scored as 0.9 or 0.2 if deemed
“slightly difficult.”

TABLE 9.6

Long List of Attributes

Benefits Side Effects Nonclinical Outcomes

Long-Term Effects

Avoidance of
pregnancy
Avoidance of STIs

Short-Term Effects

Less heavy periods
No periods
Less painful periods
More regular periods
Fewer premenstrual
symptoms
Less acne

Heavier periods
No periods
Painful periods
Irregular bleeding or
spotting
Nausea
Weight gain (>2 kg)
Irritability/depression
Breast tenderness
Headaches
Skin irritation
Loss of sex drive
Delay in return to fertility

Having to see a doctor or nurse to get
contraception
Having to go to a shop/pharmacy to get
contraception
Having an injection
Having an implant under the skin in one’s arm
Having a vaginal examination at a clinic
Remembering when to take or use contraception
Relying on my partner to remember when to take
or use contraception
Genital contact (touching the vagina or penis) to
use contraception
Any interruption during sex to use
a contraceptive method
Any loss of sensation/feeling during sex
Sexual partner knowing of contraceptive use
Friends or family knowing of contraceptive use
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9.4.4.1 Determining the Weights
The MCT asks Rachael to indicate how much she is concerned with the differ-
ent criteria she selected in Step 2 by asking her to move her cursor on a blue
bar, which visually represents the relative importance placed on the criteria
(see Figure 9.2). Rachael’s weights show that avoiding pregnancy is her pri-
mary concern, followed by reducing her periods, avoiding weight gain, and, to
a lesser extent, not having to remember when to take or use contraception,
avoiding feeling irritable or depression, and, finally, avoiding STIs.

9.4.5 STEP 5: EVALUATION AND COMPARISON OF ALTERNATIVES

9.4.6 STEP 5.A: AGGREGATE THE DATA TO OBTAIN THE OVERALL VALUE

OF THE ALTERNATIVES

After normalizing the weights provided by Rachael and using formula (1) in Sec-
tion 9.3.6, the MCT calculates the overall value of each of the contraceptive

Your results

Weightings

Use roll-overs or i button for more information
Female sterilisation

Male sterilisation

Progestogen-only pill (POP)

Male condom

Female condom

IUD: Intrauterine device

IUS: Hormonal intrauterine system

Diaphragm

Contraceptive injection

Contraceptive implant

Natural family planning

Pregnancy Sexually Tra... Less heavy b... Weight gain Depressed or... Remember

Cap

FIGURE 9.2 The MCT results screen with Rachael’s selected attributes and weights.
(Note: the swing weights displayed on the figure are normalized at the backend to generate
the overall value of contraceptive methods) [43, p. 99].
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methods available to Rachael, reflecting her priorities (Figure 9.2). Rachel’s top
two choices are to get a hormonal intrauterine system (IUS), followed by an
intrauterine device (IUD) or implant.

9.4.7 STEP 5.B: TESTING ASSUMPTIONS

The MCT allows for Rachel to vary the weights while she analyzes the recom-
mended contraceptive methods. This enables her to see how robust the rankings
of contraceptives are to changes in weights.

Another key source of uncertainty lies in the efficacy of the contraceptives,
in particular, how well they are used, though this is not explored within the
MCT. Conceptually, this would involve evaluating the ranking of contraceptives
using different performance estimates such as in the scenario that she was using
the contraceptive methods perfectly.

9.5 SUMMARY

This chapter provides an introduction to MCDA and its multiple applications
to healthcare decision making. Multiple methods exist to conduct an MCDA
and the methods are tailored to different purposes, based on existing good prac-
tices. Belton and Stewart [1] and Keeney and Raiffa [42] provide a theoretical
background to implementing MCDA, and the following references outline good
practice guidance on selecting and implementing it in the context of healthcare
decision making [19, 20].
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10.1 BACKGROUND

Mathematical models have been used to inform decisions in healthcare since at least
the 1950s [1] and the underlying theory goes back much further [2]. Economic con-
siderations were also incorporated early on [3]. Initially, these models were mostly
based on decision trees, but their lack of explicit consideration of time led to the
proposal that state-transition (i.e., “Markov”;– see Chapter 4 for more on Markov
models) models be used instead [4]. Recognition of the limitations of the state-tran-
sition approach brought to the fore the advantages of discrete event simulation [5].
Although other techniques have been used [6], these three comprise the vast major-
ity of the models used in pharmacoeconomics [7], with the cohort Markov
approach still the most common one [8]. Until now, these types of models have
been viewed as distinct, mutually exclusive approaches [9], with the implication that
a modeler must choose among them when designing a solution to a particular
problem.

One of the main uses of models in pharmacoeconomics is to inform health
technology assessments (HTAs) by agencies that control market access. For this
purpose, the model integrates evidence from multiple sources to estimate the
expected costs and health consequences of a new technology. As this HTA pro-
cess may be, by its very nature, adversarial, the manufacturer seeks coverage at a
price that is often higher than the agency finds reasonable – the means of estimat-
ing the expected consequences are subject to much scrutiny. Thus, the model
must be presented to the health authority who needs to be able to evaluate its
veracity. Apart from requiring appropriate technical knowhow, this evaluation
also depends on the transparency of the submitted model. Given widespread
familiarity with spreadsheets, it has become commonplace to request that the
model be implemented using this kind of software with the hope that it will be
more intelligible than if it is programed in another language.

Unfortunately, spreadsheets were not designed for sequential calculations
required in most pharmacoeconomic models. As a workaround, many modelers
implement their Markov approach by using sequential spreadsheet rows as a
proxy for time, referencing the prior row to apply the changes in state member-
ship each cycle. The resulting linkages can become quite complex and errors are
common despite careful verification [10]. An even bigger problem, however, is
that constraining the modeling tool to a spreadsheet has perpetuated the restric-
tion to Markov models as implementation of a discrete event simulation in this
kind of software is perceived as too onerous [11]. The contortions required to
shoehorn the increasingly complex problems into cohort Markov models further
complicate the formulas and linkages and increase the propensity for error.

It was against this background that a new modeling approach was sought. It
had to free the modeler to properly reflect the necessary aspects of the problem
without forcing simplification or unnecessary manipulation, yet it had to remain
possible to implement it fully in a spreadsheet without requiring external software
or programming. In addition, any new method should not introduce undue com-
plexity and should remain as transparent as possible regardless of the complexity
of the model. Flexibility to implement changes or alternative structures was also
considered highly desirable. This quest resulted in the development of discretely
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integrated condition event (DICE) simulation. As it turns out, this approach uni-
fies the common modeling techniques into a single framework.

In this chapter, the fundamental concepts of DICE are explained, the imple-
mentation of a DICE model is described, and the handling of the common
modeling types is illustrated. The execution of a DICE simulation is detailed
and various software variations are considered. Finally, the future directions for
DICE are discussed.

10.2 FUNDAMENTALS

There are only two simple concepts in a DICE simulation: conditions and
events. A condition is any item of information considered in the model, and an
event is a point during execution where at least one condition is modified. The
DICE simulation begins by initializing all the conditions to their known values
at baseline (the “Start” event) and then proceeds to call each event at its sched-
uled time; process that event’s consequences; and then call the next event, until
an event designated “End” is encountered, at which point the simulation stops
and the values of those conditions designated as Outputs are reported.

A very simple example is a survival model. In such a model, there are two obvi-
ous conditions: Alive and Dead. If everyone starts alive, then the concern is to
record the proportion who die at each point in time of interest. At the Start, the
simulation enters 100% for Alive and 0% for Dead. The simulation then advances
to the next TIME (a condition, of course) where an event, say Transition, occurs
and applies the Death probability (another condition). This results in a change in
Alive using the simple equation Alive × (1−Death). Similarly, Dead changes to
Dead + (Alive × Death). If the interest is in computing survival in life years, then an
output condition, LifeYears, is defined and it accrues Alive × Interval, with the
latter condition defined as the current TIMEminus the Previous Event Time, a con-
dition that is recorded at each occurrence of Transition. (Note that the accrual of
life years should happen before the Death probability is applied.) This continues
until either 100% are Dead or another criterion is met, say TIME is equal to
another condition Timehorizon. This calls the End event, which stops the simula-
tion and reports the LifeYears. What has been described in this simple example is,
of course, a cohort Markov model.

It turns out that with these two basic concepts – conditions and events – it is
possible to specify just about any pharmacoeconomic model of interest. Conditions
can refer to all the characteristics of patients that may be relevant (e.g., age, sex,
weight, smoking, biomarker level, EQ5D score, etc.); they can also describe the dis-
ease (e.g., subtype, severity, duration, prior treatment, score, etc.); the intervention
(e.g., name, class, dose, route, side-effects, formulation, price, etc.); the values to be
applied (e.g., utilities, unit costs, etc.); the parameters of equations (e.g., the type of
distribution, its shape and scale); the times at which events will occur; model aspects
(e.g., structural links, flags and toggles, random numbers, etc.); and, of course, the
outputs to be accrued.

The special output conditions can be of several types. The simplest are coun-
ters that record the number of occurrences of a particular item of interest (e.g.,
deaths, hospitalizations, adverse events, treatment switches, etc.). Another type
are discrete accumulators that add a quantity every time the corresponding

DICE Simulation 173



thing happens (e.g., adding the cost of a doctor’s visit or of an admission to
hospital). Sometimes a quantity accumulates continuously over time (e.g., life
years, QALYs, daily costs). Finally, there may be a need to record how an out-
come changes over time (e.g., a Markov trace of a state membership). Regard-
less of the type, the accrual of outputs must be specified in each event, as
appropriate.

The events in a DICE model are the points in time where the values of condi-
tions change. These may correspond to an event that happens in the real world
(e.g., birth, death, hospitalization, treatment initiation, etc.) or they may be an
instance required by the model. The Start and End events are examples of the
latter (mandatory ones), and the Transition event in a Markov model is one as
well. There is no limitation to the number or nature of events in a DICE model –
the modeler may specify as many as required to properly address the problem.

At each event, its consequences must be specified. These generally imply a
change in the values of conditions. The simplest action is to Set the value of a
condition. For example, the next time of occurrence of an event can be set to a
very large value to ensure it does not happen again or it can be set equal to
TIME so that it happens immediately. A related action is to Update a value, usu-
ally via some sort of calculation. Age, for example, is commonly updated by
adding TIME to the baseline Age. Similarly, values are Accrued into outputs and
more complex formulae can be used to Calculate other quantities (e.g., using a
Cox proportional hazards equation). Sometimes, it is necessary to Find a value in
a source table of conditions or to Select one according to some index. Finally, a
logical expression may be used to Decide what happens next.

A DICE model is fully specified by the list of Conditions, including the list of
special Output conditions, the list of Events, and the lists of Consequences of
each event. These lists constitute the entire model and nothing else is required to
detail the structure, inputs, and outputs. The execution of the simulation is car-
ried out by a separate component that is not part of any specific model.

In order to find the next event and actuate its consequences, a discrete inte-
grator is needed. This component must be able to read the lists that specify a
particular model; it must find the next event and implement its consequences
in their specified order and must also detect the End event where it stops and
reports the outputs. It is convenient if around this core loop the discrete inte-
grator also is able to repeat the simulation for each intervention to be mod-
eled, for each subgroup or individual and for as many replications as the
modeler specifies. These “outer loops” are described in more detail later.

10.3 EXECUTING A DICE SIMULATION

Execution of a DICE simulation is carried out by the discrete integrator. An
important specification for developing the DICE method was that it must be
possible to implement it entirely in a spreadsheet such as MS Excel®; the
description here will address the details of this implementation. Needless to
say, the same steps can be taken using many other software programs and this
is briefly addressed in a subsequent section.

174 Pharmacoeconomics



The key to executing a DICE simulation in MS Excel® is to impede the
spreadsheet’s inherent calculation of all equations at once and replace that by
sequential activation of each instruction at the appropriate time. This is done by
eliminating the equal signs that signal to Excel that an expression is a formula to
be calculated. For example, if a spreadsheet cell contains the formula = Age +
Time, then Excel will look for the cell range named Age and add to it the value of
the cell named Time, placing the result in the cell that contains the formula. If
the = is removed, however, Excel interprets Age + Time as a text phrase and does
nothing with it. This successfully blocks execution of the formula until the precise
time during the simulation when it needs to be activated.

The next step is to write a macro that reads the text expression and executes
the specified formula. This is tantamount to entering the = in front of it. Once
the calculation is complete and the result has been stored in some specified cell,
the = must be removed again so that the formula reverts to a text expression
until the next time it is activated. The macro then places the = in front of the
next expression and the execution proceeds. The macro that implements this
process is detailed in the following.

For the macro to be able to work, it must also be able to read the lists that
fully specify the model. This can be implemented in MS Excel® by taking
advantage of the formal Tables object included in the software. An Excel Table
is a named set of demarcated columns and rows that has certain properties. By
identifying a Table with a unique name, the discrete integrator can be directed
to the appropriate Table, regardless of how many rows or columns it has or
where it is placed in the spreadsheets. Apart from its name, a very useful prop-
erty of a Table is its number of rows, not including the row holding the column
labels. This property can be used to set the limit for the loop that executes the
expressions in the table.

The three lists of components (Conditions, Outputs, and Events) are easily
placed in named Excel® Tables. Each Table has the name of the component in
the first column. The Conditions table (Table 10.1 has the current value of each
condition in the second column. A third column can be used to store the initial
values and the fourth column can hold any clarifying notes. The Outputs table
can be laid out in a similar manner except there is no initial values column as
these always accumulate from zero. The All Events table also has the name of
each event in the first column (Table 10.2). The second column stores the

TABLE 10.1

Example of a conditions table listing four conditions
Name Current value Initial value

ID 1

Sex Female

Age 64

BioMarker 144

DICE Simulation 175



current time to the next occurrence of that event. This array of event times is
called CurEventTime. The third column contains the initial time to that event
(if known at the Start). The fourth column is very important as it contains the
name of the Table that lists the consequences of that event.

The Consequences tables are organized a bit differently (Table 10.3). For con-
venience, the first column specifies the type of component that a row will act on.
Although they are all conceptually conditions, it is useful to distinguish Outputs
and Event times from the other Conditions. The second column specifies the name
of the Condition, Output, or Event time that will be affected, and the third
column contains the text expressions that detail what should happen when the dis-
crete integrator activates that row. As already noted, these are devoid of the = that
would convert them into Excel formulae, but they must respect Excel syntax so
that at the time of activation by the discrete integrator they are correctly executed.

10.4 THE DISCRETE INTEGRATOR (DICE MACRO)

The DICE macro consists of a core loop that implements the DICE Conse-
quences tables for one pass between the Start and the End events of several outer
loops that repeat the execution for each intervention of interest, each subgroup,
or individual profile, and for as many replications as the modeler intends

TABLE 10.2

Example of the AllEvents table for a Markov model
Name CurEventTime Initial Time To Event Table Notes
Start Now tblStart Initializes intervention

Partition Cycle tblPartition Reads the partition curves

End TimeHorizon tblEnd Ends the simulation

TABLE 10.3

Example of a portion of a Consequences table

Type Name Expression Notes

Condition LOS Time-TimeAdmitted Calculate length of stay

Condition HospCost LOS*DailyHospCost Calculate hospital cost

Output accruedQALY accruedQALY+(Time-TimePrevEvent)
*Utility

Accumulating QALYs

Condition Utility utilityStroke Updating utility

Event ThisEvent Never Do not execute this event again

Condition NextEventTime MIN(CurEventTime) Find next event time

Condition NextEvent MATCH(NextEventTime,
CurEventTime,0)

Find next event
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10.4.1 THE CORE LOOP

The core loop executes, for one profile and one intervention, the consequences
of each event when it is called. For each selected event, the expressions in the
event consequence table are executed one by one starting with the first row. For
example, if the consequence table for the event Hospital Discharge has the first
row in Table 10.3, the macro will subtract the value of the condition TimeAd-
mitted from the condition Time and store the result in the condition LOS, thus
calculating the length of stay. These computations can be done by letting Excel
calculate the expression using a normal cell; however, to improve execution
speed, it can be done internally in the macro. The Consequence tables may have
any number of rows, which the macro activates in the sequential order they are
listed. After the first row is calculated and the received value stored in the
named item, the next row is executed and so on to the end of that event table.

It can be important to be mindful that the macro calculates the rows in
sequence, from top to bottom of the table. For example, if the rows in Table 10.3
were reversed, the calculations would render very different results because LOS
needs to be calculated before it is used

Sometimes the reversal is intentional. For example, if the current utility
value is for the “healthy” state and the person has a stroke, the QALYs must
be accrued before the utility is updated to that poststroke (third and fourth
rows in Table 10.3).

When the end of a Consequences table is reached, the macro looks for the
next event. The core loop does so by choosing the minimum time from CurE-
ventTime list. This is easily ensured by including the last two rows of Table 10.3
at the end of each event consequences table. The first of these rows finds the
lowest event time and the second matches that to the corresponding event,
yielding its row number in the All Events table (Table 10.2). The macro then
uses that number to find the name of the Consequences table for that event.
Since at the end of each Consequences table the macro checks the CurentEvent-
Time list for the minimum time, it will find that the time of the event it is exe-
cuting remains the lowest time, unless this is explicitly changed. Thus, early on
in each event Consequences table the time of that event must be changed to a
very high number (conveniently stored in a cell named Never). Or, if it is recur-
rent, to a time in the future (e.g., TIME + 1). If this is not done, the same
event will be repeatedly executed, which leads to an infinite loop. This keeps
happening until the End event is encountered (which is why an End event is
mandatory). At that point, the macro executes any expressions in the End event
and stops the core looping.

10.4.2 THE OUTER LOOPS

Since the core loop handles the events for one profile for one intervention, it
needs to be executed multiple times to address any additional interventions
and profiles. This is what the outer loops do.
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Events

Interventions

The “closest” loop out from the core events loop is the
interventions loop.

This loop adds one to the current Intervention number, reinitializes the Condi-
tion values, Event times, and Outputs, and restarts the execution of the core loop.
Thus, the values of intervention-specific conditions (e.g., efficacy, dose, cost, etc.)
need to be set in the Start event. If there are many such conditions, it is convenient
to group them in an Initiate Treatment event called immediately after Start.

Since all interventions are run without changing the profile, nuisance vari-
ance is reduced. If it is important that certain random numbers are the same
for a given profile across the different interventions, these should be stored as
Conditions. The macro will reset them to their initial values (without drawing
new random numbers), thus using the same initial values for all interventions
when running each profile.

The next loop further out from the core is the Profiles loop. This loop copies
the values contained in the next profile into the corresponding Conditions (e.g.,
Sex, baseline Age, Biomarker level, etc.), and restarts the Interventions and core
loops. The macro will loop in this way through all the profiles selected to run in
the model.

Events

Interventions

Profiles

A profile contains the set of Condition values that identify a type of person
that will be simulated. In a Markov cohort model, this might be a single pro-
file, or there may be several to represent subgroups (e.g., younger females,
younger males, older females, older males). In an “individual patient” model,
there will be many profiles. If there are no relevant characteristics to consider,
the single profile will consist of the minimum condition required by the DICE
macro, which is “ID.” There is no upper limit to the number of characteristics
that can be stored in the profiles.

The profiles are listed in a profile table (Table 10.4) (side note, for Excel to
keep the structure of a table it must have at least two columns, so a placeholder
besides the “ID” is required if no other columns are defined), and copied into
the condition table in the same order as in the table. Thus, the columns of the
profile table should exist as conditions in the condition table in the same order.
This Profile will be read into the Conditions table (Table 10.1).
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Once the values from the Profile table are copied into the Conditions table,
any initial values are calculated (e.g., a risk score may depend on characteristics
in the Profile) and any random numbers in the Conditions table are sampled.
This completes the initial setup for that specific profile; it is stored so it can be
used for all interventions (as explained earlier).

If a Profile table consists of multiple profiles, there is a possibility to filter
(using the normal, built-in, Excel Autofilter function) the table and DICE will
only run the visible profiles. Thus, the desired subgroup can be selected from
the entire Profiles table.

Finally, the outermost loop is the Replication loop. This loop restarts all
inner loops, reinitializing the profile selection, the intervention number, and
the core loop. This will be repeated until the specified number of replications
has been executed.

Events

Interventions

Profiles

Replications

Since this loop will select all new random numbers, it will produce a set of out-
puts in each replication that differs from previous replications. By running many
replications, stochastic uncertainty can be addressed. If no random numbers have
been specified (i.e., model is fully deterministic, such as a cohort Markov model),
the results would not change unless the inputs change between replications. This
is what is done when running a Probabilistic Sensitivity Analysis (PSA), regard-
less of whether the model itself is deterministic or stochastic.

TABLE 10.4

Example of a Profiles table

ID Sex Age BioMarker

1 Female 64 144

2 Male 61 232
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The number of calculations that is executed is multiplicative, meaning for a
simple Markov model with three events (Start, Transition, End), a single pro-
file, two interventions, a cycle time of 1 year, and a time horizon of 20 years,
there will be 44 events (22 for each of the 2 interventions) to execute (each
event having multiple rows to calculate). If a PSA of 1,000 replications is run,
the core loop will be run 44,000 times. If there are 100 calculations in the core
loop, the macro has to execute 4.4 million computations. If this is converted
to an individual simulation with 1,000 profiles, there will be more than 4 billion
expressions to calculate. This explains why execution times, especially for PSA,
can be extended.

10.5 HOW A DICE SIMULATION INSTANTIATES THE DIFFERENT
MODEL “TYPES”

To illustrate how the DICE method unifies the different model “types” under
one framework, a simple example will be used. This example is the HSD
(Happy–Sad–Dead) model, which starts off all profiles in Happy mood, with
a certain probability of becoming Sad that depends on the intervention.
Regardless of intervention, a person can become Happy again. Mood affects
costs, utility, and the probability of dying.

10.5.1 SURVIVAL PARTITION

In a survival partition model, the cohort is distributed into the three states over
time by reading the proportion who are no longer Happy and the proportion
who have Died and obtaining the proportion who are Sad by subtraction. In this
very simple conceptualization, the return to Happy is not allowed. The transition
probabilities out of Happy are converted to a hazard, and since they are specified
as constant, an exponential distribution is used to derive the partition curve for
proportion still Happy. The transition probabilities to Dead are also converted to
a hazard and in the same way used to derive the corresponding survival curve.

The model is implemented in DICE using a Partition event plus the manda-
tory Start and End. In the Partition event, the two curves are read, and the Sad
proportion is calculated (Table 10.5). In the Start event, the intervention-specific
conditions are initialized (Table 10.6). In the End event, little is required. The
All Events table has three rows (Table 10.2). The Conditions table will contain
all the conditions specified in these event tables together with their initial
values. The Outputs table will list the three outputs specified.

10.5.2 COHORT MARKOV

Converting the survival partition model to a cohort Markov and enabling the
transition back from Sad to Happy is fairly simple. In the All Events table, the
Partition event is renamed Transition and its table specified as tblTransition.

180 Pharmacoeconomics



In the Start event, the HappyHazard is changed to pHappyToSad (the transi-
tion probability) and the adjustment uses a relative risk (RR). The End event
does not change, but the Partition event is modified to the Transition event by
replacing the three state condition rows (Tabke 10.7).

The new conditions replace now unneeded ones in the Conditions table,
and that’s it.

TABLE 10.6

Example of a Start event table

Type Name Expression Notes

Condition Time Start To reset the clock to zero

Event Start Never To avoid infinite loop

Output Tmt
CHOOSE(IntervNum, “SoC”,
“UpUpMab”)

To label the output according
to treatment

Condition HappyHazard
HappyHazard*CHOOSE(IntervNum,
1,HR)

Set according to treatment
hazard ratio

Output CostTmt
CHOOSE(IntervNum,CostSoc,
CostInterv)

Set cost according to
intervention

Condition NextEventTime MIN(CurEventTime) Find next event time

Condition NextEvent
MATCH(NextEventTime,
CurEventTime,0) Find next event

TABLE 10.5

Example of a Partition event table

Type Name Expression Notes

Event Partition Time + Cycle Set next Partition to occur at
cycle time

Output QALY QALY+Cycle*(Alive*uAlive
+Sad*uSad)

Accrue QALYs using average
utility

Output Cost Cost+Cycle*(Alive*cAlive
+Sad*cSad)

Accrue Cost using average costs

Condition ReadTime Time + HalfCycle Allows for half cycle correction

Condition Alive Exp(-DeathHazard*ReadTime) Reads proportion still alive

Condition Happy Exp(-HappyHazard*ReadTime) Reads proportion still happy

Condition Sad Alive-Happy Computes proportion sad

Condition NextEventTime MIN(CurEventTime) Find next event time

Condition NextEvent
MATCH(NextEventTime,
CurEventTime,0) Find next event
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10.5.3 INDIVIDUAL MARKOV

In an individual Markov model, the structure is very similar to that of a
cohort Markov model, but the transition probabilities are tested using random
numbers. Since an individual can only be in one state, the three Cohort model
states can be replaced by a single Condition named “status,” with 1=Happy,
2=Sad, and 3=Dead. The transition probabilities are then cumulated to a
single distribution that reflects the possibilities from each state. For example,
if the individual is Sad, then the boundaries of the distribution segments are
0, pSadToHappy, 1-pSadToHappy-pSadToDead, and 1.

To implement this, the seven rows in Transition event that processed the
transition probabilities are replaced (Table 10.8):

TABLE 10.7

Rows that replace the three state condition rows in the Partition event table
Condition HappyDead pHappyToDead*Happy Computes happy who are dying

Condition SadDead pSadToDead*Sad Computes sad who are dying

Condition HappySad pHappyToSad*Happy Computes happy who get sad

Condition SadHappy pSadToHappy*Sad Computes sad who get happy

Condition Dead Dead+HappyDead+SadDead Collects proportion in Dead

Condition Happy
Happy+SadHappy-HappyDead-
HappySad Collects proportion in Happy

Condition Sad
Sad+HappySad-SadDead-
SadHappy Collects proportion in Sad

TABLE 10.8

Rows in the microsimulation Transition event table that replace the seven
transition probability rows in the cohort Markov table
Output QALYs QALYs+Cycle*Utility Accrue QALYs

Output caCost caCost+Cycle*Cost Accrue costs

Condition cumPHappy CHOOSE(Status, 1-pHappyToSad-pHappy-
ToDead, pSadToHappy,0)

Select cumulative happy
probability that applies

Condition cumPSad CHOOSE(Status, pHappyToSad, 1-pSadTo-
Happy-pSadToDead,0) + cumPHappy

Select cumulative sad
probability that applies

Condition Status MATCH(RAND(), cumPArray, 1) Determine current status

Condition Utility CHOOSE(Status,uHappy,uSad,0) Assign utility according
to status

Condition Cost CHOOSE(Status,CostHappy,CostSad,0) Assign cost according to
status

Event End If(Status=3,Time,End) If Dead, end simulation
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Presumably, the reason to convert to an individual simulation is that pHappy-
ToSad depends on some individual characteristics. Suppose that a separate analysis
produced a Cox proportional hazards equation:

EXP 0:37 � Sex ¼ “Female”ð Þ þ Age� 70ð Þ � 0:027þ 0:00189 � BioMarker� 100ð Þð Þ

If this will not be updated during the simulation, then the baseline Prognostic
Index can be computed directly in the Profiles table where Sex, Age, and Bio-
Marker are also stored. These conditions are added to the Conditions table and
the expression for pHappyToSad is modified in the Start event to pHappyTo-
Sad*CHOOSE(IntervNum,1,RR)*ProgIndex. The weighted average utility and
cost used in the cohort model are no longer appropriate. Instead, the current
Utility and Cost are set according to “Status” after this is updated (second to the
last two rows in Table 10.8). These are used at the beginning of the Transition
event to accrue the QALYs and costs (first two rows in Table 10.8). Finally, since
the individual may die at a Transition event, there is no point in continuing to
simulate that person, and so a line is inserted after the new Status is determined
to end the simulation if it is determined that death will happen (last row of Table
10.8). The Conditions table is then modified accordingly, and the Cohort Markov
has been converted to an individual model.

10.5.4 DISCRETE EVENT SIMULATION (UNCONSTRAINED)

The conversion to a discrete event simulation involves a bit more effort since tran-
sition probabilities are no longer tested but rather used to determine the time
until each event will occur. Thus, the Transition event is deleted and replaced by
three events (Table 10.9).

Assuming the individual begins Happy, the time until GetSad is selected in
the Start event using a random number, and a hazard conditional on treatment
and adjusted for the prognostic index (Table 10.10). The time to Die is selected
in the same way.

TABLE 10.9

Modified AllEvents table for the discrete event simulation

Name CurEventTime Initial Time To Event Table Notes

Start Now tblStart Initializes intervention

GetSad Never tblGetSad Processes the change of mood
to sad

GetHappy Never tblGetHappy Processes the change of mood
to happy

Die Never tblDie Processes a death

End TimeHorizon tblEnd Ends the simulation
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In the GetSad event, the Status needs to change, the time to Die must be
recalculated and the time to Get Happy again derived (Table 10.11). The accu-
mulation of Outputs is different now because it happens over a variable period
since the fixed cycling no longer takes place. This interval is calculated near
the beginning of each event (Table 10.11) and TimePrevEvent is stored near
the bottom.

The GetHappy event is a mirror image of the GetSad one and Die is very
simple, just calling the End event immediately. All new conditions are entered
in the table and the conversion is complete.

10.6 ADVANTAGES AND LIMITATIONS

Hopefully, some of the many advantages of DICE simulation have already
become evident. They are reiterated here with a few additions and the current
limitations of the method are discussed as well.

10.6.1 ADVANTAGES

10.6.1.1 Simplicity
The method relies only on two concepts in a standard basic structure for every
model. This means that if you can understand the concept of a condition (piece
of information) and an event (point in time where that information changes),

TABLE 10.10

New rows in the Start event for the discrete event simulation
Event GetSad (LN(1-RAND())/-HazardToSad) + Time Select time to GetSad

Event Die (LN(1-RAND())/-HazardToDie) + Time Select time to Die

TABLE 10.11

Partial Get Sad event table

Type Name Expression Notes

Condition Interval Time—TimePrevEvent Store time from last event

Output QALYs QALYs+Interval*Utility Accrue QALYs

Output caCost caCost+Interval*Cost Accrue costs

Condition Status “Sad” Update the status

Event Die Die*(HazardToDie/
HazardSadToDie)

Update Time to Die

Event GetHappy (LN(1-RAND())/-HazardToHappy)
+Time

Update Time to get Happy again

Condition TimePrevEven Time Store time of this event
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then you can assess any DICE model, and with appropriate subject matter
knowledge, understand what it is doing [12].

A DICE model is entirely specified in MS Excel®, which is the most common
choice for spreadsheet software. This ensures familiarity with the interface and
navigation, the commands, and the available functions. All stakeholders have the
option to engage early on to work with and review the model since it consists of a
standard structure in basic Excel and the files are small and easily shared. Thus,
there is no need to acquire or learn new software or find specialized programmers.

The clarity, brevity, and familiarity of a DICE simulation promote the possi-
bility of making models open source, without imposing massive support burdens
on the developers. An instruction manual that is generic is easily created and
shared. Users can review the model, understand its workings, and if the develop-
ers allow it, even modify the structure.

10.6.1.2 Building and Modification
A DICE model is quick to implement, which shifts focus from coding and
implementation (as in standard models) to design and development of inputs,
especially equations, and ensuring that the model is appropriately reflecting
the disease pathways and interventions. Once a modeler has built one DICE
and has grasped the simple tables concept, building the next one is very easy
and further reduces the emphasis on programming.

Any DICE table can be easily edited, with new elements added by just insert-
ing rows, while no-longer needed ones can be simply deleted. There are no links
to rebuild, no live formulas to handle, and the expressions in plain text are easy
to check since they are entered only once. By avoiding repetition of formulas, the
propensity for errors is minimized. The ease of modification makes changes –
even last minute – possible (albeit revalidation should be done).

The flexibility of DICE, as explained in Section 10.5, allows for whatever
structure makes sense for the problem. Even multiple types are easy to imple-
ment in the same model and Markov elements can be combined with discrete
event simulation [13] in hybrid models that fit the problem. Aspects such as
nonpersistence, switching treatment, sequential lines, side-effects, clinical deci-
sion rules, varying biomarker levels, patient characteristics, and more can be
easily included since DICE handles time accurately and simply.

The often-heard lamentation that structural sensitivity analysis is very
important but almost impossible to do is relieved. DICE makes it possible to
address structural uncertainty in multiple ways, including the simple way of
turning on and off events with toggles to incorporate two or more structures
in the same framework. A toggle can change the structure from pure cohort
Markov model to an individual patient time-to-event model to check if the
selected structure has any significant impact on the results.

In the lifetime of a model, new data appear, as well as requests to adapt the
model for other jurisdictions. Sometimes this requires changes to the model, if
the new data are not directly comparable with the old ones, the new country’s
treatments paths differ, and so on. Since modifications of the model are easily
made, this presents no problem.
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10.6.1.3 Transparency
The models being used for HTA assessments are required to be transparent
[14], meaning that it should be possible for someone other than the modeler
to review the model and understand it (sometimes even rebuild it).

With the entire DICE model specified in a set of plain tables, built in Excel
(which is the preferred software of many HTAs [15, 16]), it is easy to accomplish
this. A typical text expression like “QALY+IntervalSincePrevEvent*Utility” is
easy to understand. And with the expression/formula being in one place and not
repeated many times, checking for linking errors is eliminated. Nothing is hidden,
and no part of the actual model is in code.

The macro running the model (looping through the event tables) is general
to all models, is very simple, and is provided open source. An agency reviewing
a model can run it using their own, checked, version of the macro to be certain
that the macro supplied with the model has not been modified.

10.6.1.4 The Method Is Open Source
The DICE method, as well as the macro running the model, is fully open
source and is available to download. The decision to keep it open and available
to anyone has fostered wide acceptance by authorities, clinicians, and other
stakeholders. The DICE consortium that will oversee the official version of the
DICE method and the macro, as well as facilitate updates, is coming together
as a mix of academia, industry, HTA agency, consultancies, and other key
competencies.

10.6.2 LIMITATIONS

10.6.2.1 Execution Speed
The use of Excel® and the transparent and generic way a DICE model is set
up leads to slower execution speeds, particularly if the core macro in VBA is
forced to go back and forth to the worksheets. A bespoke model custom coded
entirely in a fast programming language with all equations and expressions
embedded is certainly much faster but it loses transparency and the reliability
of having everyone depend on the same model engine, regardless of the disease
area or interventions.

There are ongoing efforts to speed up the DICE macro. It is already 20 times
faster than the first open version. It is expected that speed will continue to
improve as ways are found to avoid triggering the worksheets during execution.
In addition, a version of the macro that is written in a fast lower-level language
is in progress. This will increase the execution speed by a thousand times or
more without taking away any of the advantages of DICE.

10.6.2.2 Interaction and Queue Limitations
By design, DICE executes one profile (patient, cohort, subgroup) at a time,
which results in a few limitations. There can be no direct interactions between
profiles. For example, in a model of an infectious disease, it is not possible to
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have one person infect another or, based on vaccination coverage, allow herd
immunity to develop. Moreover, competition for resources (hospital beds,
doctors, etc.) or estimating queuing time in front of constrained resources is not
easily possible. For these types of requirements, the solution is to use appropriate
sophisticated DES software that includes entities or agents, explicit representation
of resources and queues, and other components.

10.6.2.3 Issues with International Excel, Versions, and
Operating Systems

Microsoft enables Excel to adjust to local conventions and use either a point or
a comma as the decimal separator. Similarly, the list divider (e.g., CHOOSE
(InterventionNum, “SoC”, “TheNewDrug”)) can be a comma or a semicolon.
In the normal function of a worksheet, where the expressions have an initial equal
sign, and are thus recognized by Excel® as formulas, the components are updated
to the local setting of that specific computer, including translations of function
names (e.g., “CHOOSE” becomes “ELEGIR” if opened in a computer set to use
Spanish as the default). This does not work when the equal sign is removed, turn-
ing the expression to pure text. This problem can be overcome either by:

• putting equal signs in all expressions before transferring a DICE work-
book from one computer to another with a different language setting;

• opening the model in the recipient computer and verifying that the
functions have been translated; or,

• removing the equal signs from all expressions to restore their “text”
nature.

A handy utility for doing this is included in the DICE custom ribbon.
Of course, manual translation of the functions, replacement of decimal

signs, and list dividers can always be done.
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11.1 INTRODUCTION

Previous chapters have outlined four commonly used evaluation techniques,
cost–benefit analysis (CBA), cost-effectiveness analysis (CEA), cost–utility ana-
lysis (CUA) and cost-minimisation analysis (CMA), which are all used to assist
in decision-making. It might be thought that this only involves undertaking the
calculations and then applying a decision rule. For example, the simplest rule in
CBA is to proceed in all cases in which CBA gives a positive net present value
where benefits exceed costs, so a net gain to society is achieved. However, it
may not be desirable to rely solely on such a decision rule. The rule can result
in poor decisions when there are mutually exclusive alternatives. Mutually exclu-
sive alternatives occur when there is a specific resource which, if used on one
project, is no longer available for others (hence, there is an opportunity cost in
terms of alternative options foregone). For example, a piece of land could be
used for a hospital or a rest home but not both. Even if both give positive net
present value, only one of them can be undertaken. In this situation, it is sug-
gested that the one with the highest net present value be chosen to achieve the
greatest benefit for society. In addition, there may be reservations about the dis-
tributional effects of this approach. These arise because gains and losses are
simply added up to get a net present value, meaning that some people may gain
substantially while others may lose. The decision maker may be concerned
about the resulting distribution of costs and benefits, rather than just their
totals. This is just one of several criticisms that can be raised about the
approach. For a broadly based critical perspective on the application of neoclas-
sical microeconomics to policy decisions, see Chapter 14 of Hunt [1].

A more fundamental concern is the allocation of decision-making responsi-
bility. At one extreme, decisions could be made entirely according to
a mechanical decision rule whereas, at the other extreme, decision makers could
have full discretion in their choices. In a democracy elected representatives are
entrusted to make decisions on people’s behalf, and they may be able to add
societal insights that cannot be incorporated into mechanistic approaches. They
may be able to incorporate preferences, as with distributional aspects, or there
may be specific local considerations not covered in general evaluations. In prac-
tice, small, routine decisions are likely to be made according to established
rules, whereas larger, one-off decisions are more commonly made by appointed/
elected decision makers.

Briefly, then, a purely mechanical approach may not always be satisfactory
as the technique and the decision rule may not always give the optimal answer
and it might be considered important that the final decision be left to elected
representatives. In other words, the actual process of policy making/decision-
making may be important. Tyler [2] describes the importance of procedural
justice, suggesting that people are more willing to accept decisions, even those
that are against their interests, if they believe that the processes followed were
fair. In recent decades, an emphasis on ‘evidence-based policymaking’ would
suggest a mix of technical analysis and political input, with the former serving
to inform the latter.
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11.2 STEPS IN THE TECHNICAL ANALYSIS

In making any resource allocation decision there will undoubtedly be
a multitude of factors to consider. However, a decision rule approach requires
that the mass of relevant information be somehow condensed into a single
number. Three steps are involved. First, the components in relation to the spe-
cific problem must be identified and measured. This can be difficult and will
involve expertise beyond that commonly possessed by an economist. In other
words, a cross-disciplinary approach is required. A health specialist may be
aware of the relevant clinical dimensions associated with a treatment and an
economist should understand the economic dimensions. However, perhaps nei-
ther is well informed on the psychological and social factors that may affect
preferences and perceived costs and benefits. The current move by some aca-
demic economists into the growing area of “happiness research” indicates
both recognition of our lack of understanding of this issue and acknowledge-
ment of its possible importance [3]. The need for a mix of health and eco-
nomic information is clearly described from the introduction to Dasbach,
Elbasha and Insinga [4] and Goldie et al. [5] beginning with a reference to
health, economic and national policy perspectives.

Second, some or all of the selected components of costs and benefits will
have to be valued. To the extent that the analysis is based on dollar values,
market or other prices (“shadow prices”) must be determined. Shadow prices
are needed if there is no market for the item or if it is considered that the
market prices are misleading. Moreover, as some costs and benefits occur in
the future, estimates will have to be made as to future prices, along with
a mechanism for comparing values over time. Goldie et al. refer to the quality
adjustment of life expectancy as a form of valuation [5]. For this to be the
case, the basic unit of “currency” utilised is a healthy year of life.

Third, some form of analysis will have to be undertaken to convert the
information into the measures to which the decision rule can be applied.
These might be net benefits, benefit:cost ratios or cost per quality-adjusted
life year (QALY), for example.

11.3 POTENTIAL PROBLEM AREAS

Analytical techniques are applied at each step in the analysis, and it is import-
ant to assess the value and appropriateness of such techniques. To what extent
do they address the issues in such a way as to give the “right” answers or are
they simply commonly accepted methods? In other words, are they based on
logic and proof or rhetoric and persuasion? Ideas change over time, and
methods applied and accepted in the past may be considered unsatisfactory
now just as present approaches will almost certainly be interpreted as being
suboptimal in the future. To some degree, we are simply faced with a problem
of having to make difficult decisions, so we rely on approaches that will hope-
fully give reasonable results in the majority of situations. Such techniques
remove some of the responsibility from the decision makers on the basis that
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they followed “best practice,” rather than acting subjectively or according to
personal prejudice. In this section, two broad aspects of analysis are con-
sidered. First, we look at discounting, then we consider the identification of
preferences as a basis for measuring or valuing costs and benefits.

11.3.1 DISCOUNTING

Aggregation is the process of grouping together items and treating them as if
they are the same. We aggregate diverse expenditures by using dollar values as
a common measure. We give figures for the number of patients treated, even
though individual treatments may vary. There is an assumption that all
patients are the same. Similarly, in Goldie’s model, it is assumed that “all per-
sons residing in a particular health state are indistinguishable from one
another” [5]. Aggregation is central to the process of reaching one number on
which to apply a decision rule.

Frequently we must aggregate over time. When dollar values are used, it is
commonly accepted that a dollar today is not equivalent to a dollar next year.
At the very least, a dollar today could be set aside to earn interest, thereby
having a value greater than one dollar by next year. For this and other
reasons, it is widely accepted that, when aggregating monetary values over
time, we should adjust for timing. Hence, we could compound the values to
give some value in the future, taking into account the interest that could be
earned. More commonly, we would follow this process in reverse, by discount-
ing future values to give a measure of “present value” (PV).

At its simplest interpretation, given a sequence of payments over time, the PVof
the sequence is the sum of money that, if held today, could be invested at the speci-
fied interest rate so as to allow the holder to just recreate the payments. There are
other interpretations that can apply when other discount rates are used. These are
based on other reasons for having positive “time preference,” whereby the present
is valued more highly than the future. For example, if I could earn 10% annual
interest, then $100 today could turn into $110 in one year and $121 in two years. If
I wanted to spend $100 this year, $110 next year and $121 the year after, then it
would not matter if I were paid those sums at those times, or if I received $300
now. With $300 now, I could spend $100 now, while investing $100 for one year
and $100 for two years. Alternatively, if I could also borrow at 10% interest and
I wanted to spend $300 now, then it would not matter whether I received all $300
now, or three yearly payments of $100, $110 and $121. The nature of the required
calculations is described in the Appendix to this chapter.

In summary, if it is possible to borrow or lend at the same rate of interest,
then it is possible to convert any pattern of payments and receipts over
time into any other pattern so long as they both have the same PV (cal-
culated by discounting at that rate of interest). The PV figure gives us
all the information we need. Aggregation over time is acceptable because
timing is not important.
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11.3.1.1 What Discount Rate?
It is well recognised that streams of monetary values over time can be com-
bined through discounting. The discussion above indicates one possible justifi-
cation for this approach, subject to the assumption that borrowing and
lending are possible at a rate of interest equal to the discount rate. It is an
approximation for several reasons.

a) Borrowing and lending rates commonly differ.
b) There may be further distortions due to differing tax treatments of

interest earned and paid. Interest income may be taxed, but it may be
possible to set it off against losses elsewhere. Interest payments may
be made from after-tax income (as with home mortgages), or be con-
sidered as a deductible expense, as with mortgage interest on invest-
ment properties, thereby coming out of before-tax income.

c) Interest payments and receipts will be measured differently if con-
sidered from the point of view of individuals (concerned about the
effect on them, and hence looking at the net-of-tax sums), or the gov-
ernment or society, concerned about the overall effect from their
perspectives.

d) Interest rates are also sensitive to inflation. Lenders commonly want
higher interest when inflation is high. The extra interest is really
a response to the falling purchasing power of the money they have
lent. There is therefore a capital repayment component in the interest
payment. Economists talk of nominal and real interest rates. Nominal
rates are those actually charged or paid. Real rates are the percent-
ages paid after adjusting for the distorting effects of inflation. As
a simple example, if the nominal interest rate is 10% and inflation is
10%, then $100 lent for a year would give the lender $110 at the end
of the year. This is just enough to buy what could have been bought
with $100 at the start of the year, so the lender is no better off. The
$10 interest is nothing more than a part of the repayment of capital,
and the real interest rate is zero. Moreover, if tax on interest must be
considered, this means that inflation is causing a portion of the real
capital to be taxed on repayment.

Prevailing interest rates are set through financial markets and are influenced
by market demand and supply. It could be considered that this process fails to
reflect society’s preferences. For example, it is sometimes suggested that indi-
viduals, thinking of themselves, may have a shorter time horizon than society
as a whole which may be considering future generations. Placing a lower value
on the future equates to discounting at a higher rate. It is therefore widely
thought that the individual/private discount rate is too high, and that the
social discount rate should be lower.

Goldie et al. adopt a societal perspective, discounting future costs and life
years at an annual rate of 3% [5]. If we use a discount rate other than that at
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which we can borrow or lend, then our interpretation of discounting breaks
down. It would not be possible to switch between any two payment streams of
the same PV. Some other justification for ignoring timing would then be
required.

An alternative interpretation might be that we are indifferent between the
two streams, so timing is not important. This does cause a problem, however.
If we are indifferent at the chosen discount rate, and we can borrow and lend
at another rate, then we have an incentive to actively borrow or lend. Consider
a social discount rate of 5% and a prevailing interest rate of 10%. Society
would be indifferent between $100 now and $105 next year, but $100 now
could earn interest and become $110 in a year’s time. Society (or the govern-
ment on society’s behalf) has an incentive to defer $100 of spending now, so
as to be able to spend $110 next year. If the rates are constant, it has an
incentive to defer every $100 of spending now, and it could also defer every
$110 of spending next year so as to be able to spend $121 the following year,
and so on. In fact, if the social rate is lower than the market rate, it would
make sense to defer all spending indefinitely!

More probably, the more current spending is curtailed, the greater the
value that would be placed on an additional dollar of current spending, and
the more future potential spending is increased, the lower the value seen in an
additional dollar spent in the future. This is an example of marginal analysis,
which is widespread in economics. Additional costs and benefits are unlikely
to be constant as quantities increase. This indicates a limitation of cost-
effectiveness measures or cost:benefit ratios which, being ratios, conceal the
scale of activity at which they were calculated. There is no reason to assume
the same cost-effectiveness for a screening program reaching 70% of a target
population and the same program reaching 90% of the population. As Goldie
states, “screening is not equally accessible to all groups of women” [5], and
Dasbach describes Taira’s finding of cost-effectiveness varying with coverage
[4].The social and private rates would therefore move closer together. As we
do not see major spending deferral, perhaps the difference in rates is very
small. Alternatively, if the decision is political, then public decisions (including
the choice of discount rate) may be shaped by the expression of individual
preferences through the political process, or through politicians placing
emphasis on short-term, political considerations.

11.3.1.2 First-best and Second-best Solutions
Economic analysis frequently aims to describe a “best” solution based on
structures assumed in economic theory under conditions of perfect competition.
These solutions have been referred to as “first-best” solutions. Perfect competi-
tion is seldom if ever observed in real-world markets and hence first-best solu-
tions may therefore not be the best in real-world practice. The optimal decision
for the real world, recognising the inevitable distortions from perfect competition,
is called the second best. Lipsey and Lancaster’s article is a classic treatise on the
Theory of Second Best [6]. The points they raise are relevant here. The argument
that future benefits would be undervalued in evaluations using standard discount
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rates should be considered in the context of the operation of the economy as
a whole. Note that a common approach in economic theory is to make an impli-
cit assumption that other parts of the economy are functioning properly. The
undervaluing of future benefits is then the only distortion to consider. In other
words, we could aim for a “first-best” solution. However, if there are distortions
elsewhere that cannot be removed, then a first-best solution is not attainable. The
problem then becomes far more complex.

In making the case for lower or zero discount rates for health benefits, it
has been suggested that there would be underinvestment in health care if
standard discount rates are used. However, a case could also be made that
there is underinvestment in numerous private sector areas. The argument goes
as follows. Private sector investors are aware that outcomes are uncertain. If
an investment turns out badly, the costs to them can be severe. They are there-
fore likely to want a higher expected return to compensate them for the risks
they face. This is called risk aversion. The outcome of numerous private
investments from the perspective of society as a whole is far less uncertain.
Some projects succeed, others fail, and there is some averaging out overall.
From a social perspective, therefore, it is desirable for many individual risks to
be ignored. Therefore, there are potential private sector investments that are
socially desirable but are not undertaken due to risk aversion. The private
sector is under-investing. Healthcare investments and private sector non-
healthcare investments are competing against each other for limited funds. If
lower requirements are set for health investments, more of them will be
approved, further reducing (or “crowding out”) other investment.

This is a major problem as the world assumed by the theory is
a simplification which ignores a range of real-world distortions and suboptim-
alities which limit the practical value of the theory. At the same time, deci-
sions must be made on some basis. The term used to describe simplified
approaches to decision-making is “heuristics.” Perhaps, then, theory could be
considered as giving an analytic basis for some heuristic approaches that we
can and do use as a loose guide to our decision-making. They may be helpful,
but they are approximations which will not always give us the most appropri-
ate answers.

11.3.2 DISCOUNTING NON-MONETARY UNITS

A clear distinction separating CMA, CEA and CUA from CBA is that the
latter requires dollar values to be placed on all the costs and benefits that are
considered. In contrast, CMA, CEA and CUA include non-monetary meas-
ures. As mentioned previously, one popular non-monetary measure in health
economics is the QALY. Hence, CEA is often applied in terms of cost per
QALY gained from treatments. For the purposes of illustration of non-
monetary measures, the following discussion will consider just life years. For
a novel (and fictional) approach to placing a monetary value on life, see
Johnson [7].
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The problem of discounting non-monetary units can be considered in two
steps. First, is it meaningful to add up quantities and then undertake analyses
in relation to the totals? Second, if the answer to the first question is “yes,”
should we then adjust for the timing of the quantities by discounting (i.e. dis-
counting at a non-zero rate)? The first question is important because it asks
what meaning can be given to the units used. Discussion on discounting such
units commonly focuses only on the second question, as if the question were
solely one of deciding whether to discount at a non-zero rate, and, if so, what
rate should be chosen.

11.3.2.1 Is It Meaningful to Simply Add up Quantities?
Consider the outcome of a treatment being measured in terms of increased
life expectancy, or life years gained. Is it meaningful to talk of total life years?
It might be helpful to think of some other item, such as motor vehicles.
Would we find it helpful to consider the number of motor vehicles produced
in a year or in a decade? Motor vehicles include motorcycles, cars, buses,
trucks and even motor boats. Even taking cars alone, there are numerous
makes and models. The differences may be unimportant, but an annual data
series showing motor vehicles by volume could look very different from
a series by value, which can be affected by the types of vehicles produced.
Nevertheless, volume figures are sometimes presented as an indication of
output. What about volume figures for a decade? It would be rare for econo-
mists to refer to numbers such as these. They may be used for descriptive pur-
poses but are unlikely to be used for analysis, especially in relation to costs.
Timing of production might be considered important, and costs over a decade
would almost certainly be discounted. If we find it misleading with cars,
would it not be equally misleading with life years?

There is a fundamental process involved when we are adding up in this
way. Whenever we group items, whether quantities or values, we are aggregat-
ing, and are therefore at risk of encountering aggregation problems. These
arise because aggregation can involve the loss of information or misleading
simplifications. The key requirement for aggregation is homogeneity of the
components of the aggregate. When an aggregate variable (such as total
output) is used in a specific analysis, a context is defined. This includes the
variable’s relationships with other variables (such as total cost). There is no
loss of information if the relationships are identical for each component of the
aggregate (such as each motor vehicle). Conversely, if the relationships differ,
we are approximating (as with using an estimate of average cost). Birch [8]
gives an example of the Simpson paradox, where one treatment appears better
than another when considering a sample from a population as a whole, but
the results are reversed when considering the population divided into two sub-
groups, rich and poor, for which the effects differ. Similarly, if we are using
aggregate output when our real concern is with benefits, there is an implicit
assumption that all units provide equal benefit. Aggregation of health state
values is discussed in Brazier et al. [9]. They assume that some form of aggre-
gation is acceptable. Their focus is on the method of aggregation, questioning
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whether the mean or median response should be used. This indicates a further
set of options to consider when constructing an aggregate.

Hence, we are making implicit homogeneity assumptions as soon as we
group life years in the context of a cost-effectiveness analysis.

11.3.2.2 What Do Discounted Quantities Actually Mean?
Consider now the concept of discounting motor vehicle production as we
might discount dollar values. With annual value of production figures, we
could calculate their PV through discounting at an appropriate rate. So,
instead of simply adding up motor vehicles, a volume measure, can we make
some equivalent adjustment for the actual year in which the vehicles are pro-
duced? The result would not be in the same units as the undiscounted total.
Just as we talk of PV, which is different from the sum of annual dollar values,
we would have to talk of some unit such as “present motor vehicles.” The pro-
duction of 100,000 motor vehicles a year for ten years would not give us
one million motor vehicles. At a 10% discount rate it would equate to the pro-
duction of 675,904 “present motor vehicles”. Can we be comfortable with this
concept? We do not use it when considering motor vehicles. Should we use it
when considering life years? Instead of referring to a life expectancy at birth
of 75 years, should we discount at 10% per annum and talk of a life expect-
ancy of eleven “present years”?

There is a way that this approach can be explained. It is not that we are
avoiding valuing life years. Rather, without open acknowledgement, we are
implicitly valuing them, but in another currency. The prices of all life years at
the same time are assumed equal. This, in relation to quality-adjusted life
years, has been encapsulated in the expression that a QALY is a QALY is
a QALY (see, for example [10],). If we think of it, this may not be something
we are willing to accept. The position runs counter to that expressed in the
“fair innings” viewpoint, which is based on the idea that people who have
already lived a certain amount of time have had a fair innings, whereas
younger people deserve more [11]. Considering fair innings, it may be para-
doxical that people’s preferences are used to estimate specific QALYs, but they
are ignored when aggregating QALYs.

If life years are then discounted to calculate present life years, it is assumed
that the implicit values of a life year change in a systematic way according to
the timing. All that is missing from this approach for us to be able to go from
present life years to dollars is an exchange rate.

The length of life issue raises another possible complication. What if the
effects of a treatment for an individual can be felt over several years? The
effects may well differ according to the age, and hence the life expectancy, of
the patient. Consider, for example, a treatment with the simple effect that it
prevents instant death, after which the individual can live as normal. This
might give 10 years of life to a 75-year-old but closer to 60 years of life to
a 25-year-old. In other words, the effects of a treatment could depend not
only on the treatment itself but also on the types (or age groups) of individ-
uals treated. Should treatments then be assessed in relation to each type
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separately? Even when assessed for one group, results may vary. For the ana-
lysis to produce a single figure, this uncertainty will have to be ignored.

11.3.2.3 What Discount Rate Should Be Used?
This issue is discussed in detail in Neumann’s update of Gold et al.’s classic
book [12].The question of choice of discount rate is generally posed in
terms of a search for some constant rate to apply. Hence there is an impli-
cit assumption that the rate does not vary over time. However, there is
much controversy about the choice of discount rates and whether costs and
benefits should be discounted at the same or different rates. In recognition
of this, Drummond and Jefferson [13] suggest that sensitivity analyses
should be undertaken using alternative discount rates, including zero. One
reason why zero discount rates have been suggested in both the health and
the environmental area is that the benefits are likely to be felt some time in
the future, whereas many costs are incurred now. It has been argued that
discounting at a positive rate counts against activities with more distant
benefits. Discounting at a zero rate results in these benefits being more
prominent and is, therefore, thought by some to be more desirable. The
argument is flawed. It is claiming that the approach should be taken not
because of some inherent validity in the reasoning, but because the results
more closely reflect the advocates’ wishes. However, a discount rate should
not be chosen simply because it gives the result we want. There should be
some stronger rationale. If the results are considered unacceptable when
using an economically justified discount rate, then perhaps the problem lies
elsewhere in the analysis. For example, perhaps we should consider the
(explicit or implicit) values placed on the future benefits.

Those who want a lower or zero discount rate are really saying that the
analysis is based on prices of future life years that are too low. A zero-
discount rate means that we should be prepared to set aside as much now to
gain a future life year as we are willing to spend for an extra life year
this year. That same sum would grow over time, so more is effectively being
allocated per life year in the future. When applied to the environment, the
argument could be that future consequences of environmental damage are
greater than currently commonly believed, and the costs of repairing the
damage will rise if the problem is not addressed soon. However, logic aside, it
may be politically easier and more persuasive to use the argument that dis-
counting shows a lack of concern for the future, hence the call for a zero-
discount rate for environmental issues.

If we treat discounting (including at a zero rate) as a means of condensing
a series of life years over time into one number, we could apply the same test
as for PV. If two series equate to the same total number of present life years,
is it possible to convert from either series into the other? If so, then we could
consider them equivalent, and the actual timing unimportant. Can we forego
current life years in exchange for future life years or vice versa? For individ-
uals, this may be difficult, although there could be some scope for shifting
quality of life from one year to another. For society as a whole, there is more
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flexibility. Nevertheless, the ability to shift may not match the discount rate
being used for financial transactions.

Failing the ability to shift, would we be comfortable with an assumption that
we (or society) are indifferent between the two series? One interpretation of dis-
counting is based on “time preference”, with the view that people value the pre-
sent more highly than the future. For a person to be indifferent between two
sums of money, one now and the other at some time in the future, it would gener-
ally be expected that the future sum would be larger (and, if discounted to the
present, the discounted value would equal the sum available now). It is not clear
that we would view years of life in the same way. First, mainstream economics
assumes that people get utility from the consumption of goods and services. The
more they consume, overall, the greater their utility. Were it possible to simply
suspend a year of life, so as to live it sometime in the future, then it would also be
possible to leave wealth to accumulate, enjoying the much larger sum at the later
date. Given that possibility, a year of life in the future would be far preferable to
a year of life now. Put more simply, if life will be so much better in the future, it is
preferable to increase future life rather than life in the present (for individuals or
for society as a whole). This raises a fundamental issue. While there are attempts
to limit world population growth, large sums are being spent on health care,
including health care of the elderly. Analyses such as CMA, CBA and CEA are
concerned with efficient use of resources, given specified objectives, focusing on
costs and benefits for people who are alive. Future generations only have an indir-
ect say in these decisions to the extent that they are a factor influencing the pref-
erences of the current population. Besides efficiency, we are also concerned about
equity issues and perhaps broader aspects of an implicit social contract. For
these, the distribution of costs and benefits is important. People’s perceptions of
the decision-making processes may also be important, as can be seen in literature
on procedural justice. This is the reverse of the monetary evaluation, one argu-
ment of which states that people will be better off in the future, so an additional
dollar then would be valued less than an additional dollar now. This is based on
the concept of diminishing marginal utility. Note that the link between utility and
wellbeing is more complex than assumed in current mainstream microeconomics.
Earlier thinking on utility was not restricted to it being a function of goods and
services (see [14]), and developments in the area of happiness research are also
based on a broader view [15]. As a curiosity, Jeremy Bentham, the most promin-
ent name associated with utilitarianism, is reported to have said that he would
rather live the rest of his life one year per century[16].

In summary, there is no clear and generally accepted answer as to what dis-
count rate should be chosen, or even if the aggregation and discounting pro-
cess has any validity. At best, it could perhaps be argued by analogy that if an
approach is valid for monetary measures, then a similar method may suit
non-monetary measures. A deeper investigation of the assumptions required
for this raises serious concerns. An alternative approach could be to forego
the attempt to find a single number, presenting instead a broader range of
information to assist decision makers. This point has been made in Bos,
Postma and Annemans [17].
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11.3.3 MEASURING PREFERENCES

Mainstream economic theory includes the assumption that people’s prefer-
ences are exogenous and therefore taken as given and determined outside the
theory. This is understandable, given the emphasis on static analysis and
ceteris paribus assumptions in this body of theory. Static analysis does not
consider adjustments over time, and at any one time, preferences are fixed. In
addition, under the economic “ideal” of perfect competition, people are
assumed to be perfectly informed. Even where imperfect information is
assumed, it is interpreted as the information being incomplete, rather than
actually false, or misleading. This does not reflect the real world. In practice,
issues are highlighted, opinions are shaped, people are persuaded to see things
from particular perspectives, and understanding is influenced by experience,
the media and the attitudes of others.

11.3.3.1 Whose Preferences?
QALYs or other measures, including monetary valuations, are required for
assessing outcomes or benefits, and sometimes costs, associated with interven-
tions. Goldie et al. considered costs and clinical benefits, but recognised the
need for data on patient and parent preferences [5]. There are not well-
functioning markets for all the aspects that should be considered. Preferences
must be deduced by other means. One approach is by asking people, as with
stated-preference techniques. For a brief overview of stated preference tech-
niques in healthcare evaluations, including discussion of problems and limita-
tions, see Bridges [18]. However, this begs the question of who should be
asked, and how?

When considering the effects of a healthcare intervention, some studies ask
healthcare professionals, others ask patients and yet others ask the general
public. These may give different answers. They have differing levels of under-
standing, their emotional commitments to the issues may differ, and they are
taking different perspectives. Moreover, people’s preferences may change
according to their circumstances. A specific problem has been identified with
patients’ preferences, namely “peak” effects and “end” effects [19]. People’s
remembered perceptions are heavily influenced by the extremes (peaks) and by
the situation at the end, as with pain that suddenly stops, compared to an
equivalent pain that then gradually eases, with the former being considered
worse. An additional dimension is the extent to which findings from a study
can be applied. Do they relate to that study sample alone, or are they more
useful than that? In other words, there are issues of transferability and gener-
alisability ([20], Chapter 10).

When obtaining survey results, information is passed on to the participants.
The results can depend on people’s prior knowledge and the information
given. In addition, views can change when people are responding in
a communal situation where there has been some general discussion. It is not
clear whether these changes are due to people refining their views or adapting
so as to appear to conform to the general view. This has been discussed in
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a health context [21], also raising the point that individuals’ valuations may
differ depending on whether they are considering a personal or societal per-
spective. A similar point has been made in Richardson and Smith [22] on will-
ingness to pay for a QALY. Group influence on expressed views has also been
discussed in the broader context of deliberative democracy [23].

Whereas markets provide a price (hopefully the equilibrium price), surveys
give individual preferences. These must then be combined to get an overall
figure. Utility theory and welfare economics stress that a person may be able
to indicate a preference ordering, stating if A is preferred over B, but this is
an ordinal measure. As such, it does not say by how much A is preferred, nor
is it possible to compare the degree of one person’s preference to that of some-
one else. For that, cardinal measures are required. Nevertheless, some method
of aggregation is required so as to combine individual preferences to obtain
a measure for the evaluation. Wiseman [24] uses two alternative methods to
show that the choice of method can affect the result. It is therefore not
enough to know that preferences have been elicited.

These issues have been widely discussed in the health economics literature
but more subtle problems with preferences that have been largely ignored by
economists involve sociolinguistics and discourse analysis. It is to these that
we now turn.

11.3.3.2 The Role of Process and Persuasion
While the comments below are raised in the context of pharmacoeconomics,
they have a wider relevance in terms of economic approaches more generally,
and in relation to public deliberation on policy issues.

Techniques are applied, and their results may have an impact on decisions
that are made. Are the techniques legitimate? How much weight should be
placed on the results? If they are accepted, is this because of the inherent
merit of the studies, or is there just some tacit agreement to be persuaded by
these analyses?

Adam Smith, sometimes referred to as the “father” of modern economics,
gave a series of lectures on rhetoric in 1762 and 1763 [25].This was not
remarkable at the time. Smith reflected a long tradition (dating back to clas-
sical Greece) where both logic and rhetoric were considered central to a good
education. Briefly, we could consider logic to be concerned with proof,
whereas rhetoric is concerned with persuasion. When describing the rhetoric
of political debate, whereby policy decisions are made, Smith used the term
“deliberative eloquence”. People are not necessarily swayed by detailed, tech-
nical, logical arguments. It is more likely that they would be persuaded by
simple points and rhetorical techniques such as humour, the use of analogy,
or appeals to authority or to emotion.

While this perspective could be used to consider political debate, it has also
been suggested that the same techniques may influence our understanding of
economics. This point is discussed at length in a book called The Rhetoric of
Economics [26]. McCloskey considers the extent to which accepted economic
findings do not have a firm basis in logic. There are numerous examples.
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Economic theory might conclude, within a narrowly defined theoretical frame-
work, that competition is desirable. We cannot logically claim that this result
applies in the real world without showing that the theory reflects the real
world. Failing that, an acceptance of the view requires a leap of faith. We are
persuaded, but not on the basis of logic.

Literature on the processes of policy making can also be seen to draw on
the scholarship of rhetoric. Dunn [27], for example, lists eleven “modes of
argumentation.” These are ways in which positions can be presented so as to
persuade people to a particular viewpoint. Logic is not mentioned, and the
presentation of logical arguments may not be very effective in comparison to
other approaches – advertising and celebrity endorsement immediately come
to mind. The results of studies may be convincing, although this is not neces-
sarily related to the quality of the studies themselves. McCloskey [26] devotes
much attention, in her book and elsewhere, to the distinction between statis-
tical significance and economic or policy significance. She stresses that many
refereed studies fail to note the difference, resulting in questionable policy con-
clusions. See also Chapter 6 by Donaldson et al. [28]. Persuasive methods
include “authority,” the use of a source or personality that people trust, and
“analogy”, applying an approach in one context that people already accept in
another (even though it may not, in fact, be suitable). Some of the techniques
that analysts apply may have achieved acceptance on such grounds as well.

Literature on critical discourse analysis focuses on the use of selected words
to emphasise a particular perspective and on broader approaches to “frame”
issues in desirable ways. Fairclough [29] refers to “ideological-discursive for-
mations” which groups may use to define debate in a way that favours their
perspective. Attitudes to health conditions may differ according to whether
they are seen as resulting from individual behaviour or as a consequence of
social circumstances, for example.

Such analyses could be considered as “macro” approaches to rhetoric, as
compared to traditional rhetoric, which is “micro” in focus, looking at indi-
viduals in debate. This is drawing on the economic distinction between
microeconomics, looking at individual units or markets, and macroeco-
nomics, which considers a broad-brush approach to the economy as a whole.
Public perceptions and media presentation of issues will be heavily influenced
by dominant terminology and frames. Considine [30] describes policy as the
result of competition between groups, each trying to create the dominant
perspective. In a similar vein, other literature emphasises the setting of agen-
das [31–33].

Public perceptions are shaped by the information that is transmitted in
these processes. It might be hoped that debate in the media would result in an
informed public. Bourdieu doubts this. He suggests that television favours
people he terms “fast thinkers.”[34] He does not mean that they actually think
quickly. Rather, they can give quick answers that will be accepted. Far from
thinking, they are simply tapping in to currently held beliefs, thereby getting
instant audience acceptance and giving the appearance of being knowledge-
able. His point could apply to much of the mass media. Consequently,

202 Pharmacoeconomics



dominant frames are emphasised, prior beliefs reinforced and false perceptions
perpetuated. This can have a significant impact on people’s understanding of
issues and priorities, at least those for which they have little or no direct per-
sonal experience.

11.4 CONCLUSION

The title of this book indicates that the aim is to go from theory to practice.
Terms used in several texts on economic evaluation in health are best practice
or the current convention. This is no mistake. Theory is not conclusive on the
methods to be used. In fact, it could be argued that any approach taken is
subject to valid criticisms. There is often a conflict between theory and prac-
tice. Analysts are charged with undertaking assessments and making policy
recommendations. They cannot avoid the issues by saying that the data do not
exist or the theories are deficient. In many cases, ad hoc or pragmatic
approaches may be used, while theories are being developed in parallel or sub-
sequently. In some areas of economics, theories have been developed in an
attempt to find a rationale for existing analytical practices. Indicative planning
is one example (see [35]).

Where theories are used, they could be questioned in terms of their own
validity (given their assumptions), and in terms of their applicability in
a particular situation. In relation to the latter, assumptions may be made as
a basis for an approach, after which the conclusions could be treated as if
they apply regardless of the assumption. This is a problem when assumptions
are not explicitly stated, as with exogenous preferences. Debates on
approaches also indicate that methods are sometimes chosen not based on
their legitimacy, but because they give the desired results. More generally,
approaches may be chosen less on the basis of logic and more based on rhet-
oric or persuasion. They are plausible, or appealing.

This does not mean that pharmacoeconomic analyses are necessarily
giving wrong results but, rather, we cannot be necessarily certain that they
in all cases will derive better answers than alternative analytical approaches.
In such circumstances, it is important that health economists exhibit
a certain degree of humility by at least acknowledging the limitations of
our understanding.

APPENDIX ON DISCOUNTING

Mathematically, discounting can be considered as follows:
Imagine investing $X at a rate of interest, r, for one year, with the interest

to be paid at the end of the year. You would get back your $X, plus $rX in
interest, or $(1+r)X in total. It has grown by a factor (1+r). In other words,
on this basis, $1 now is equivalent to $(1+r) next year and $(1+r)n in n years’
time. Consider this process in reverse. $1 next year can be obtained by
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investing $1/(1+r) now. We would say that the PV of $1 next year, discounted
at a rate, r, is $1/(1+r).

If you were to invest $X for additional years, the sum would increase by
a factor of (1+r) each year. After two years, you would have $(1+r)2X, and
after n years you would have $(1+r)nX. Considering this in reverse, $1 in
n years’ time is equivalent to $1/(1+r)n now.

We can apply this to a stream of dollar sums, X0 to Xn, for years 0 (the
present) to n. This would give us the PV of the sums of money. The formula
would be:

PV ¼ X0 þ 1= 1þ rð Þð ÞX1 þ 1= 1þ rð Þ2
� �

X2 þ 1= 1þ rð Þ3
� �

X3 þ . . .

þ 1= 1þ rð Þnð ÞXn
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12.1 PATIENT-REPORTED OUTCOME MEASURES

A patient-reported outcome (PRO) is a direct subjective assessment by patients
about aspects of their health, including symptoms, function, emotional well-
being, quality of life, utility, and satisfaction with treatment. PROs ask patients
to evaluate the impact and functional implications of the disease or treatment
to reflect their interpretation of the experience, which is influenced by their
internal standards, intrinsic values, and expectations. As such, PROs provide
unique information that is unavailable from other sources [1].

Direct measurement of health from the patient’s perspective is an increasingly
used outcome measure in clinical trial research. In such a case, use of PRO instru-
ments (i.e., a questionnaire plus the information and documentation that support
its use) is a means to capture PRO data used to measure treatment benefit or risks
[2]. This phenomenon reflects a shift away from an exclusive emphasis on safety
and efficacy, and from research that in the past focused narrowly on laboratory and
clinical indicators of morbidity. Measuring patients’ experience and the extent to
which they can function in their daily activities is crucial when the primary object-
ive of treatment is to improve how the patient is feeling. In fact, even when the goal
of treatment is to reduce the incidence of seemingly straightforward outcomes like
stroke or myocardial infarction, capturing the variability in patients’ function and
feelings will provide important complementary information if variability in the
adverse morbid outcome varies in severity (e.g., a mild versus severe stroke). In
fact, many regulatory bodies allow use of PRO data collection to support claims in
approved medical product labeling. The evaluation of a PRO instrument to support
claims in medical product labeling includes the following considerations:

• The population enrolled in the clinical trial
• The clinical trial objectives and design
• The PRO instrument’s conceptual framework
• The PRO instrument’s measurement properties (see 12.4)

Endpoint models (e.g., if treatments of a disease or its symptoms are the primary/
secondary endpoints) are critical to the success of appropriate PRO selection and
usage. Several analyses of the success of PROs in support of labeling claims, both
in the United States and European Union (EU), demonstrated that the EU was
more than twice as likely as the United States to grant PRO claims (19% vs. 47%
for United States and EU, respectively) [3]. Only 16.5% of the 182 New Drug
Applications (NDAs) had PRO labeling during the period 2011 to 2015, a decline
from 24% of NDAs being granted at least one PRO label from 2006 to 2010, prob-
ably due to the publication of the FDA guidance [4]. However, similar percentages
of PRO-dependent NDAs (e.g., for approvals in diseases, such as asthma or major
depressive disorder, that traditionally rely on PROs for evaluating treatment bene-
fit) had PRO labeling in the United States during the period of 2006 to 2010
(46.9%) as those in the period of 2011 to 2015 (46.0%) [4]. More than ¾ of the
claims were for primary, disease-based (vs. symptom-based) endpoints [4].
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12.2 HEALTH AND HEALTH MEASUREMENT

12.2.1 THE WORLD HEALTH ORGANIZATION

The World Health Organization (WHO) defines health as a state of complete phys-
ical, mental, and social well-being [5]. The WHO’s International Classification of
Functioning, Disability, and Health (ICF) [6] was developed to provide a standard
language and framework to describe and measure health and health-related states.
Within the ICF system, health outcomes are classified according to the effect upon
body function, body structure, limitations in activities, and limitations in par-
ticipation. Health outcomes that measure body function include measures of
physiological functions of body systems (e.g., ejection fraction, glucose level,
depression, pain, etc.). Outcomes that measure body structures include meas-
ures of anatomical parts and their components (e.g., x-ray to measure fracture
healing, computed tomography to measure tumor size, etc.). Activity is defined
as the performance of an action, whereas participation, more broadly, is
defined as involvement in meaningful activities and fulfillment of roles that are
socially or culturally expected of that person. Impairments are problems with
body functions or structures. Having an impairment of a body structure (e.g.,
disc hernia) or function (e.g., reduced range of motion) may contribute to limi-
tations in activities, including activities of daily living, walking, or driving
a car, that might also contribute to restrictions in participation. Comprehen-
sive assessment of an individual’s health will include measures of body systems
and function, as well as limitations in activities and participation.

12.2.2 HEALTH-RELATED QUALITY OF LIFE

Health-related quality of life (HRQoL) instruments measure the broad con-
cept of health (physical, mental, and social well-being) by inquiring into the
extent of difficulty with activities of daily living (including work, recreation,
and household management) and how difficulties affect relationships with
family, friends, and social groups, capturing not only the ability to function
within these roles but also the degree of satisfaction derived from doing them.
HRQoL instruments often contain items that measure body function (e.g.,
pain, depression, anxiety) and limitations with activities and participation.

Within the construct of HRQoL, it is common to come across the terms dis-
ease-specific and generic. A disease-specific measure is tailored to inquire about
specific aspects of health that are affected by the disease of interest (e.g., specific
to acne). In contrast, a generic instrument measures general health status,
including physical symptoms, function, and emotional dimensions of health
relevant to all health states, including healthy individuals [7].

Disease-specific instruments are more responsive to small but important
changes in health than are generic measures [8]. Because the items on a disease-
specific HRQoL instrument are so focused on a particular disease, however, they
cannot be used to compare the impact of one disease with another. In fact, in
some cases, disease-specific measures are so specific that comparisons between
different populations within the same disease are not possible (e.g., pediatric
versus adult populations). On the other hand, generic HRQoL instruments are
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useful when measuring the impact of a specific illness or injury across different
diseases, severities, and interventions [7].

A number of previously widely used health profiles such as the Sickness Impact
Profile (SIP) [9–14] and the Nottingham Health Profile [15–19] are now of largely
historical interest; health profiles developed from the Medical Outcomes Study,
including the 36-Item Short-Form Health Survey (SF-36) [20–22] and 12-Item
Short-Form Health Survey (SF-12) [23] have come to dominate the field of generic
health status measurement.

12.2.3 ECONOMIC EVALUATION OF HEALTH

When making decisions on behalf of patient groups, decision makers must
weigh the benefits and risks of treatment but must also consider whether the
benefits are sufficient to merit the health care resources that must be spent to
provide them. Limited societal resources necessitate that in order to add
a program, society must forgo some other benefit—if the envelope for health
spending is fixed, then another health program must be reduced. An economic
analysis can inform these decisions. The primary distinction between this para-
digm and HRQoL is the inclusion of explicit valuation of both resource con-
sumption and patient-important benefit and harm.

Economic analyses include methods to evaluate different effects (death,
effects of stroke on HRQoL, effect of reduction in acne on HRQoL) in the
same metric. One way to create the same units is through the concept of pref-
erences. Utilities and values are different types of preferences. Whether you
are dealing with utilities or values depends on how questions on measurement
instruments are framed; are participants being asked to consider outcomes
that are certain (values) or uncertain (utilities)?

The Standard Gamble is the classical method of measuring utility, based dir-
ectly on the axioms first presented by von Neumann and Morgenstern (utility
theory) that describes how a rational individual “ought” to make decisions when
faced with uncertainty [24]. During administration of the Standard Gamble, the
participant suffering from a health problem, such as severe hip osteoarthritis (in
reality or hypothetically), imagines that there is an intervention that will result in
a return to perfect health but that there is a risk of death associated with the
intervention. Participants are asked to specify the largest probability of death
they would be willing to accept before declining the intervention and choosing to
remain in their current (suboptimal) health state. The larger the probability of
death that the subject is willing to accept, the lower value they place on their
current health state. The utility of the present health state—as in all utility
measures—is placed on a continuum between death (typically given a value
of 0) and full health (typically given a value of 1.0).

For instance, let us assume an individual suffering from severe hip osteoarth-
ritis would be indifferent between his or her current health state and the gamble
when the probability of dying is 50%. This would mean that the utility the indi-
vidual places on a year in this health state is 0.5, in contrast to a year in perfect
health, which would be worth 1.0—hence the concept of the QALY (quality-
adjusted life year).
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The Time Trade-Off [25] is a measure of values. It asks participants to imagine
living their lives in their current health states and to contrast this with the alterna-
tive of perfect health in exchange for a shorter lifespan (preference-based meas-
ure). The administrator provides alternatives of years of life in the present health
state versus years of life in perfect health. The more years a subject is willing to
sacrifice in exchange for a return to perfect health, the worse the subjects perceive
their current health state (see Figure 12.1 for an example with human immuno-
deficiency virus [HIV]). Utility is calculated by subtracting the number of years
sacrificed from the number of years of life remaining divided by the number of
years remaining. The number of years remaining is estimated using actuarial
tables. So, for instance, if an individual with 30 years of life remaining with severe
hip osteoarthritis was ready to trade off 15 of those years to achieve 15 years in
full health, the QALYs allocated to 1 year with arthritis would be 0.5.

Another common value-based measure is the feeling thermometer (FT). When
completing the FT, participants rate their health status using a visual analog scale

Setup/Case
File Window

UMaker

Help
Categorical Scale Time-Tradeoff Reference-Lottery

X–

Results

HIV

HIV U = 62.50

Restart

No Preference

- +

Perfect Health

Death

Death

20151050

Loss of 5.6 years
Would you rather

1) Live for 15 years in HIV and then die.
2) Live for 9.4 years  in Perfect Health and then die.
3) No Preference.

FIGURE 12.1 Time trade-off with HIV health states. Participants are asked to express
their preference for living with HIV for 15 years and then dying or living in perfect health
for an increasing number of years (less than 15 years) and then dying, until the point of
indifference (no preference). Reproduced with permission from U–Maker (Sonnenberg).
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(VAS) presented in the form of a thermometer from 0 (worst) to 100 (best) [25–27]
(see Figure 12.2 for an example of a VAS for human papillomavirus [HPV] health
states). While this method might be easier for people to understand, the numbers
generated are often quite skewed and higher than those obtained with either
Standard Gamble or Time Trade-Off.

Measuring preferences for health states using the Standard Gamble or Time
Trade-Off is time-consuming and can be complex. An alternative method is to
use a pre-scored, multi-attribute health status classification system. Some
common systems include the Quality of Well-Being Scale [28], Health Utilities
Index [29–32], European Quality of Life Scale (EQ-5D) [33], and Short Form 6D
[34–37]. In general, patients are asked to rate their ability to function in physical,
emotional, and social aspects of life, reporting on their health state rather than
on their preference for different health states. The patient’s preference is assigned
based on a mathematical model using preference ratings of health states that
have been derived from a random sample of the general population.

12.3 MEASURING PATIENT SATISFACTION

Measurement of patient satisfaction is commonly used to evaluate treatment out-
comes. Studies document that satisfied patients are more likely to comply with
treatment protocols [38, 39], to use medical care services [40, 41], and to maintain
a relationship with a specific provider [42]. Lack of clarity concerning the mean-
ing of satisfaction has, however, been identified as a major weakness [43–49].
Patient ratings of satisfaction are generally directed at either the process of care
or treatment outcome [50], the latter of which is of most interest to clinicians.
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FIGURE 12.2 Visual analog scale.

HPV = human papillomavirus, CIN = cervical intraepithelial neoplasia, CA = cancer.

212 Pharmacoeconomics



Satisfaction may be best thought of as a construct, like health, that cannot
be measured directly. Those who have investigated items that are important to
patients in determining satisfaction have recommended going beyond inquiry
about physical symptoms and function of the diseased body part to include
items that probe satisfaction with resolution of social effects of the disease
[51, 52]. Some have suggested that patient expectations and experiences play
a role in defining satisfaction, though the evidence is inconsistent [53, 54].

Experts in the field of measurement of patient satisfaction with treatment
outcomes suggest that researchers should develop satisfaction instruments in
much the same way they would approach the development of a new measure
of quality of life, including the use of qualitative methods for item generation
[50, 55]. In consulting with the patients, the main objective should be to iden-
tify contexts in which the affected body part has different meanings and tailor
questions about satisfaction accordingly.

As with HRQoL, the challenge in developing an instrument to measure satis-
faction is capturing the necessary content to appropriately measure the construct.
In fact, several authors who have compared satisfaction ratings between measures
on the same patients have found substantial differences [56, 57]. To date, most
existing instruments were developed from the perspective of the provider or insti-
tution and not the patient.

Like HRQoL, several types of satisfaction measures exist. For example, there
are global ratings that contain one or two general questions about overall satis-
faction, or multidimensional indexes that probe different aspects of satisfaction,
including such things as emotions, desires, perceptions, and expectations.

One disadvantage of global ratings is that they do not capture what
patients are considering when reporting their satisfaction. Because of this,
global instruments are generally found to be unreliable and tend to be highly
skewed [46, 57–59]. As with HRQoL, there are also generic and disease-
specific instruments to measure satisfaction. Generic instruments can be used
to assess satisfaction in any population, whereas disease-specific scales are
designed for use in specific patient populations. The pros and cons of generic
versus disease-specific instruments are like those outlined in Section 12.2.2.

12.4 WHAT ARE THE PROPERTIES OF A GOOD MEASUREMENT
INSTRUMENT?

The choice of instrument should align itself with the objectives of the clinician,
researcher, or policy maker. If the instrument is to be developed de novo, the
iterative nature of this process must be considered (see Figure 12.3 [2]). The
intent may be to (1) discriminate between patients with different disease severity
at a point in time (e.g., whose asthma is impairing function to a greater degree
and who to a lesser degree), (2) predict patient outcome (e.g., functional status
may predict mortality in heart failure patients), or (3) evaluate change following
an intervention (e.g., which stroke patients have improved and which have not).
To be useful for application in a research and clinical setting for the first two
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intentions, instruments must be valid (measure what they are supposed to meas-
ure—discriminative validity) and reliable (provide consistent ratings between
repeated measures in a stable population). If the intention is to evaluate change
following treatment, the instrument must be valid (longitudinal validity) and
responsive (able to detect important change, even if the magnitude of the change
is small).

12.4.1 VALIDITY

An assessment of the validity of a new instrument is an evaluation of whether
the instrument measures what was intended. Researchers developing instruments
with the greatest potential for validity will have, in choosing items, consulted
with patients, and perhaps clinician experts or patients’ family members, who
have experience with the disease to ask how the disease affects their lives.

One of the first steps in selecting an instrument is to review the items that
make up the questionnaire. In some cases, the authors of an instrument will
describe its content or include the instrument in an appendix (more common in
online publications than in hard copy) so that clinicians can use their own
experiences to decide whether what is being measured reflects what is important
to patients (face validity) in a comprehensive way (content validity).

FIGURE 12.3 Conceptual framework for a patient-reported outcome (PRO).
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Readers or researchers can use several strategies to provide empirical evi-
dence of the validity of the outcome measure. For example, they can investi-
gate the criterion validity of the instrument, which is an assessment of whether
the instrument behaves the way it should when compared with a gold standard
measurement of the construct (e.g., the gold standard for virtual colonoscopy
using imaging approaches is standard colonoscopy). Although measures of
body function and structure are likely to have a gold standard reference, there
is no gold standard for quality of life.

Construct validity assesses the extent to which the instrument relates to
other measures of theoretical concepts (constructs) in the way that it should.
Types of construct validity include convergent and discriminant validity. Con-
vergent validity examines the degree to which interpretations of scores on the
instrument being tested are like the interpretation of scores on other instru-
ments that theoretically measure similar constructs. For example, we would
expect that patients with poorer performance on a 6-minute walk test will
have more dyspnea in daily life than those with better walk test scores, and we
would expect to see substantial correlations between a new measure of emo-
tional function and existing emotional function questionnaires.

Discriminant validity predicts weaker correlations with less closely-related
measures. For instance, one might expect a lower correlation between spirom-
etry and daily dyspnea than between the walk test and daily function. To
improve the strength of the inference, investigators pre-specify the magnitude of
the correlation that is expected (e.g., no correlation r<0.20; weak r 0.20–0.35;
moderate r>0.35–0.50; strong r>0.50). They would then administer multiple
instruments (spirometry, walk test, other dyspnea questionnaires, global ratings
of function) to a group of patients suffering from chronic obstructive pulmon-
ary disease (COPD) to determine the agreement between predicted and
observed correlations. The better the agreement between predicted and observed
correlations, the stronger is the evidence for construct validity.

The appropriate way to design a study to investigate these types of validity for
a discriminative instrument is by looking at the correlations between measures at
a single point in time. Such correlations reflect an instrument’s cross-sectional
construct validity.

Conversely, the appropriate way to measure validity for evaluative instruments is
by looking at the correlations in change over time between measures. For example,
COPD patients who deteriorate in their 6-minute walk test score should, in general,
show increases in dyspnea, whereas those whose exercise capacity improves should
experience less dyspnea; a new emotional function measure should show improve-
ment in patients who improve on existing measures of emotional function. Such
correlations reflect an instrument’s longitudinal construct validity.

12.4.2 RELIABILITY

Reliability is defined as the extent to which an instrument is free from meas-
urement (random) error. In practice, reliability refers to the extent to which an
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instrument discriminates between individuals in a population in a consistent
manner when respondents are in stable health.

The mathematical relationship that defines reliability can be explained by
the ratio of the variability in scores between patients to the total variability
(i.e., between and within patient variability). Scores obtained on a reliable
instrument will demonstrate relatively small differences between scores upon
repeated administrations in patients who are stable in their condition (i.e.,
small within-person variability). Reliability will always appear to be greater
when measured in a heterogeneous population, with greater variability in
scores between patients (e.g., includes patients with no limitations to those
with severe limitations) than in a homogeneous population.

An instrument free of random error will have a reliability of 1.0 if there is
some between-patient variability. As the amount of random error increases in
relation to the between-patient variability, the measure of reliability will
approach 0. Common expressions of the magnitude of reliability are Kappa,
when the scale is categorical, and intraclass correlation coefficient (ICC) when
the scale is continuous. Several potential influences may affect the reliability of
an instrument, including learning effects, regression to the mean, alterations in
mood, circumstance and conditions of administration, and the length of time
between assessments. It is also possible that real changes have occurred between
consecutive assessments. The most important frequently neglected determinant
of reliability is the variability in patient status on the underlying attribute.

Different techniques to measure the reliability of an instrument include test–
retest and inter-rater. Test–retest reliability is a measure of the magnitude of the
agreement between ratings in repeated administrations of the instrument in
a population with a stable health condition. There is no gold standard time frame
between subsequent administrations of the instrument; repeated administrations
too close together face criticisms that high levels of agreement reflect patients’
ability to remember previous responses, whereas administrations at large intervals
run the risk of real changes having occurred within the sample of patients. In gen-
eral, convention would suggest that any time from 1 to 4 weeks is appropriate,
but this will be largely determined by the length of time that patients are expected
to remain stable in their condition.

Inter-rater reliability is a measure of the magnitude of the agreement
between ratings given by different raters administering the same instrument in
a population with a stable health condition. The literature contains some dis-
cussion around study design for inter- and intra-rater reliability, which sug-
gests that the timing of ratings (e.g., time of day), by different raters, location,
and patient position, may influence agreement between raters [60]. Depending
on the instrument, raters may be able to assess the same patient at fairly tight
intervals, whereas other outcomes may need to be measured on different days
(e.g., measuring maximum strength that requires recovery time).

Internal consistency reliability is quite different from test–retest and inter–
rater reliability, and measures the extent to which items in an instrument yield
similar scores in the same patients on a single administration. The internal
consistency reliability coefficient (R) is used to calculate the standard error of
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measurement (SEM), which provides an easily defined estimate of the repro-
ducibility of individual measurements (SEM = σ(1—R)1/2) and can be used to
determine whether true change has occurred within an individual (√2 × SEM)
[61]. Internal consistency is very limited as a measure of reliability because it
relates only to the correlation between items on a single administration and
makes no attempt to assess the degree of variability on repeated administration
of a measure.

12.4.3 SENSITIVITY TO CHANGE, RESPONSIVENESS, AND MINIMALLY

IMPORTANT DIFFERENCE

Many people use the terms “sensitivity to change” and “responsiveness” inter-
changeably, but by some definitions, there are important differences. Sensitivity
to change has been defined as the ability of an instrument to measure true
change in the state being measured regardless of whether it is relevant or mean-
ingful to the patient or clinician [62]. In contrast, responsiveness has been
defined as the ability of the instrument to detect change that is important to the
patient in the state being measured even if that difference is small [62, 63]. It
follows that the minimally important difference (MID) is defined as the smallest
difference in score in the outcome of interest that informed patients or informed
proxies perceive as important, either beneficial or harmful, and that would lead
the patient or clinician to consider a change in management [64, 65].

The magnitude of change that constitutes an MID for many objective
outcomes may be intuitive to the clinician (changes in platelet count or serum
creatinine). For most PRO measures, however, the magnitude of change that con-
stitutes an MID is not self-evident, creating difficulties with interpreting the
results of studies that report changes in PROs. In studies that show no difference
in HRQoL when patients receive a treatment versus a control intervention, clin-
icians should look for evidence that the instrument has been shown to be respon-
sive to small- or moderate-sized effects in a similar population in previous
investigations. In the absence of this evidence, it is unknown whether the inter-
vention was ineffective or whether the instrument was not responsive.

12.5 INTERPRETING THE RESULTS OF A STUDY THAT DESCRIBES
PATIENT-REPORTED OUTCOMES

Physicians often have limited familiarity with methods of measuring how
patients feel or their ability to do the things they need or want to do. At the
same time, published articles recommend administering or withholding treat-
ment based on its impact on patients’ well-being.

In clinical research, physicians are limited to recruiting a sample of patients
from the overall population of interest. The aim is to recruit a sample that is
representative of the population of interest, test the sample, then use the results
to make conclusions about the population [66]. Unfortunately, the sample does
not always accurately reflect the population patients were recruited from, and
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even well-planned studies with a priori sample size calculations and pragmatic
inclusion/exclusion criteria (that account for variability in the population) can
fall victim to random sampling error. Random sampling error is particularly
problematic in studies with small numbers, purely due to a greater chance of
recruiting a non-representative sample. Studies with strict eligibility criteria that
intentionally recruit non-representative samples are also biased and, in this situ-
ation, recruiting more patients will not negate these issues. Relying on a single
point estimate of statistical significance (e.g., the mean difference in Knee Injury
and Osteoarthritis Outcome Scores between groups and the resulting p-value)
to determine the success of treatment is problematic, as it may lead to imprecise
conclusions about the overlying study population. Statistical significance is an
especially poor way to interpret results, as it also lacks context when it comes
to the size and importance of the effect and the reproducibility of the findings
[67]. Researchers have advocated that studies instead present and interpret con-
fidence intervals (CIs), a range of values estimating the precision of the study
statistic and what is likely to be true in the population [68–70].

One of the strengths of precision estimates is that they can be presented
around any parameter estimate regardless of the study statistic being used. The
most commonly used interval is a 95% CI, which relates to the 5% significance
level in that it represents a range of values where the population parameter is
expected to fall that are extreme enough to not be rejected at that level [66]. If
we were to repeat a study many times using a representative sample of patients
and constructed a 95% CI each time, then 95% of those intervals will include
the true value of the parameter in the population. Individuals can then interpret
the results of a study using the upper and lower boundaries of the 95% CI,
which indicate the magnitude and direction of the effect. If both ends of the CI
represent the same conclusion, such as improved PRO scores, then clinicians
can say the results are definitive and that treatment improves PROs [71]. If the
upper boundary shows improvement and the lower boundary shows declining
scores, then the clinician can interpret the results as indeterminate, meaning the
study lacks the precision to conclude whether treatment is harmful or beneficial.
Clinicians should also observe the width of the CI as a measure of precision, as
a wide, definitive CI may have boundaries that represent drastically different
effects, while a narrow CI provides a more certain estimate of the effect.

Evaluating the upper and lower CI boundaries for a PRO is more difficult
than interpreting precision estimates for a more objective outcome. For
instance, consider an adequately powered randomized controlled trial compar-
ing experimental medication versus the gold standard to prevent subsequent
heart attack in patients with coronary artery disease (CAD). The reported
95% CI for the relative risk of subsequent heart attack ranges from 0.62 to
0.81 (p<0.05), indicating that experimental medication reduces the risk of an
event by 19% to 38%. The outcome here is easily interpretable, with both
boundaries of the 95% CI, demonstrating a sizeable reduction in the number of
events and indicating that the experimental medication is effective. In the same
study, patients also completed the Seattle Angina Questionnaire (SAQ) [72],
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a valid and reliable PRO for patients with CAD. The reported 95% CI for mean
difference in SAQ scores is 7.2 to 11.8 points (p<0.05) in favor of the experimen-
tal group. The CI demonstrates improvement in patient-reported health for both
the lower and upper boundaries, but how should a clinician interpret this score?
Is this considered to be significant improvement; did the experimental medication
lead to greatly improved quality of life?

Physicians require more information if they are going to make clinical deci-
sions based on the results from studies presenting PROs. The 95% CI nicely
summarizes the precision of the study and how much to trust the result, but it
lacks context when considering the importance of PROs and the meaningfulness
of the observed effect. Thus, if a measure is to be clinically useful, its scores
must also be interpretable. Interpretability is greatly enhanced if we know the
magnitude of the change in score that is important—the MID.

Strategies to define important change have included distribution-based
approaches and anchor-based approaches. In general, distribution-based
approaches relate the magnitude of the effect to some measure of variability. For
example, in a simple before–after comparison, one could calculate the difference
between scores before and after treatment divided by the standard deviation of
scores at baseline; the resultant statistic is coined the “effect size.” In a parallel
group design, the effect size is generated by calculating the difference in scores
between the treatment and control group divided by the standard deviation of
the change that patients experienced during the study.

A rough rule of thumb for interpreting effect sizes is that changes of
a magnitude of 0.2 represent small changes, 0.5 moderate changes, and 0.8 large
changes [73]. Interpretation using effect sizes remains problematic because it is
sensitive to the homogeneity of the distribution of the sample of patients who
participated in the study (i.e., estimates of variability will vary from study to
study). In other words, the same difference between treatment and control will
appear as a large effect size if the sample is homogenous (patients are similar and
thus there is a small between-patient variability, which defines the standard
deviation) and as a small effect size if the sample is heterogeneous (patients
are dissimilar and thus there is large between-patient variability).

On the other hand, anchor-based approaches involve comparing the magni-
tude of the change observed on a PRO to an anchor or independent standard
that is itself interpretable. The anchor may be defined by achieving change on
some external criteria, for example, changing category increasing on a well-
known classification system for disease or functional severity (e.g., moving from
New York Heart Association Functional Classification III to II) or moving in
or out of a diagnostic category (e.g., from depressed to non-depressed, or the
reverse).

Another common anchor-based approach, the global rating of change, fol-
lows patients longitudinally and asks them to report whether they got better,
stayed the same, or got worse. If better or worse, patients rate how much
change has occurred—for example, they may rate the degree of change from 1
(minimal change) to 7 (a very large change), where 1 to 3 indicates a small but
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important change. In the most common way of using this approach, the investi-
gators estimate the MID as the average of the change scores on the PRO that
corresponds to a small but important change (that is, the average change in
patients who have rated themselves as 1 to 3 on the degree of change rating).

It should be noted that most MIDs available in the literature represent
within-patient change, or the number of points on a scale by which an individ-
ual must change to be considered important. In most clinical research studies,
we are comparing two groups that both receive treatment and are each
expected to improve, meaning differences as large as the within-patient MID
will rarely be observed. The between-groups MID is considered to be roughly
20%–40% of the reported within-patient MID [74].

12.6 EXAMPLES OF USE OF PROS

12.6.1 HRQOL IN HPV DECISION-ANALYTIC MODELING

Goldie and colleagues [75] used age-specific quality weights for non-cancer
states (range was 0.92 in women aged 25–34 years to 0.74 in women older
than 85 years) based on data from the Health Utilities Index (Mark II Scoring
System) and quality weights for the time spent in cancer health states (range
was 0.65 for Stage I to 0.48 for Stage IV invasive cervical cancer) from utility
estimates by the Institute of Medicine’s Committee to Study Priorities for
Vaccine Development. These weights were then multiplied by the time spent
in the health state and then summed to calculate the number of QALYs in
the cost-effectiveness model.

12.6.2 PROS IN ATOPIC DERMATITIS

In a recent cross-sectional study using data from 6 academic medical centers
in the United States collected by a self-administered internet-based question-
naire, 1519 adult patients with atopic dermatitis (AD) were stratified by AD
severity as mild or moderate/severe using the Patient-Oriented Scoring Atopic
Dermatitis (PO-SCORAD) [76]. The study objective was to characterize the
patient-reported burden of AD, a complex, immune-mediated, chronic inflam-
matory skin disease characterized by pruritus [77, 78], with regard to impact
of disease severity and inadequate control in adults from clinical settings using
multiple PRO measures. Outcomes included validated measures and stand-
alone questions assessing itch (pruritus numerical rating scale; PO-SCORAD
itch VAS), pain (numerical rating scale), sleep (PO-SCORAD sleep VAS; sleep
interference with function), anxiety and depression (Hospital Anxiety and
Depression Scale), and HRQoL (Dermatology Life Quality Index). Among
the 1519 adult patients with AD, patients with moderate/severe AD (n = 830)
reported more severe itching and pain, greater adverse effects on sleep, higher
prevalence of anxiety and depression (417 [50.2%] vs 188 [27.3%]), and greater
HRQoL impairment in comparison to those with mild AD (n = 689). The 103
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patients with moderate/severe AD with inadequate disease control1 despite
treatment with systemic immunomodulators or phototherapy (55.7%) reported
higher burdens of itch and sleeping symptoms vs. patients with controlled
disease, including more days per week with itchy skin (5.7 vs 2.7) and higher
proportions with itch duration greater than half a day (190 [22.8%] vs 20
[2.9%]). Sleep symptoms included trouble sleeping (3.9 vs 1.1 on the PO-
SCORAD VAS), longer sleep latency (38.8 vs 21.6 minutes), more frequent
sleep disturbances (2.6 vs 0.4 nights in past week), and greater need for over-the
-counter sleep medications (324 [39%] vs 145 [21%]), thus confirming the high
disease burden on adult patients, as well as equating it with disease severity.

12.7 INCORPORATING PROS INTO CLINICAL PRACTICE: BEYOND
RESEARCH

Shared decision-making between patients and clinicians has been discussed for at
least the past 18 years as potentially helpful in enhancing patient engagement,
improving patient satisfaction and general amelioration of patient outcomes
during clinical encounters; yet, it has been difficult to implement their use in rou-
tine clinical practice [79]. The US National Institutes of Health (NIH) even funded
development of the Patient Reported Outcomes Measurement Information
System, which created a bank of PRO measures for use across health conditions
and was meant to extend from research into practice [80]. The US Medicare
Merit-Based Incentive Payment System was also purporting to establish payment
structures for collection and reporting of PROs in 2016, but an admittedly small
survey (100 hospitals) [81] showed that fewer than 20% had implemented such
measures to guide clinical care. Indeed, many have cited cost and time, interruption
of workflow and other logistical concerns (such as increased burden on staff and
patient time), incompatible technologies (e.g., not allowing quick integration of
generated reports into EMRs), concerns about the reliability of results (e.g., from
fitness trackers), and need to accommodate the end user. Some of these can be
addressed with the use of patient portals, allowing administration of these ques-
tionnaires at home and having results at the ready during the office visit; tablet
computers in the waiting room; and greater user-centered design and usability test-
ing with different constituencies (e.g., the elderly or disabled with larger font sizes,
better tactile experiences), among other tactics [79, 81]. Patients are also becoming
more involved, an example being development of the FasterCures Patient Perspec-
tive Value Framework (PPVF), which enables understanding value from a patient
perspective along 5 domains: patient preferences, patient-centered outcomes,
patient and family costs, quality and applicability of evidence, and usability and
transparency [82, 83]. In fact, FasterCures and Avalere codeveloped a prototype
shared decision making tool for patients with advanced breast cancer [82].

1 Inadequately controlled AD was defined as patients who somewhat or completely disagreed with
the statement “I feel my current treatments are effective in controlling my atopic dermatitis”; all
other responses were considered controlled AD.
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12.8 NEWER CONCEPTS: EQUITY, AUGMENTED
COST-EFFECTIVENESS ANALYSIS AND
MULTICRITERIA DECISION ANALYSIS

Multiple authors have written and spoken about the inadequacy of the QALY
to incorporate all measures of value, such as equity, into the decision about
value and cost-effectiveness [84–87]. Cookson introduced the concept of the
equity impact plane, which allows consideration of trade-offs between improv-
ing total health and equity objectives for severely ill patients [84–86, 88].
Extended cost-effectiveness analysis (ECEA) broadens the concept of utility
beyond just incremental cost and incremental effectiveness to include measures
of financial risk protection and income distribution consequences. Augmented
CEA (Figure 12.4), a further option to expand this approach, introduces add-
itional value measures, such as insurance value and equity [85, 87]. A further
and possibly more comprehensive measure of value is by using a technique
called multicriteria decision analysis (MCDA), which is the weighted sum of
partial utility scores (see Chapter 9 for more information on MCDA and the
QALY) [84, 85, 88]. Another way of extending the QALY beyond “average”
utility values is an effort to replace the EQ-5D with a new measure of quality
of life,—the E-QALY,—which will capture domains such as cognition; coping,
autonomy, and control; feelings and emotions; self-identity; physical sensations;
activity; and relationships and social connections [89]. The EuroQOL group,

FIGURE 12.4 Permission granted from AMCP to republish this figure.
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which is developing the new instrument in conjunction with NICE, is now at
the stage of psychometric survey and valuation, proceeding through to
implementation.

Several US government-backed measures have been initiated to promote
patient-focused drug development, including release of a guidance on voluntary
collection of patient preference information (PPI)2 during US Food and Drug
Administration (FDA) premarket review of medical devices (premarket approval,
humanitarian device exemption application or de novo request) and passage of
the 21st Century Cures Act, which directs the FDA to “incorporate patients’
experiences, perspective, needs and priorities in drug development and evaluation”
[90]. In the former, quantitative PPI is meant to provide information on the trade-
offs patients are/are not willing to make for specified outcomes, such as means of
implantation, duration of effect, duration and frequency of use, and utility of the
device. While not strictly a PRO, which is meant to measure a patient’s percep-
tions of health status before, during, and after therapy, patient preference studies
are related in that they are designed to measure “what specified type of therapy or
attributes of a given therapeutic or diagnostic strategy a patient might prefer,”
such as those measures used in discrete choice experiments.

12.9 SUMMARY

PRO measures provide information gathered directly from the patients about
their experiences with the disease and its treatment. Because of the unique per-
spective offered by patient-reported instruments, direct measurement of health
from the patient’s perspective is popular and has replaced more objective meas-
ures as the primary outcome of interest for a broad spectrum of clinical condi-
tions. For the purpose of evaluating studies that include PROs, it is important
to understand the fundamentals of reliability, validity, and responsiveness of the
outcome measure being used in addition to appraising the validity of the study.
To make wise management decisions, patients and clinicians need to know the
magnitude of the effect of treatments on a variety of outcomes, including PROs.
Investigators must choose an informative method to present their findings to
enhance the interpretability and applicability of their results in a clinical setting.
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13.1 INTRODUCTION

With the widespread use of modeling in pharmacoeconomics (PE), sensitiv-
ity analysis has become an important tool for investigating the models
being developed and used. In this respect, modeling is conceived as the
simulation of complex systems in reality. In particular, a model may be
defined as a simplification of such complex relationships, as simple as pos-
sible, yet reflecting all relevant aspects of reality. We know that such a model
has to be both internally and externally valid, but in addition, it is important
to know its properties regarding the changes in the outcomes in relation to
changes in the inputs or parameters. The set of parameters reflects those char-
acteristics of reality, which were deemed relevant for simulating the specific
realities of interest. The latter may be the costs, savings, and health gains of
a specific therapeutic treatment. The parameters may be concerning epidemi-
ology, progression of disease, and unit costs. The generic investigation of these
changes in the outcomes in relation to changes in the input parameters is gen-
erally labeled sensitivity analysis (SA).

This chapter deals with SA of models in all of its dimensions. The role
envisaged for SA will be discussed by considering the PE guidelines throughout
the world. Most country-specific guidelines do specify a particular role of SA for
judging the appropriateness of models and for selecting those analyses that
reflect state-of-the-art PE analysis. Relevance of such PE guidelines is high as,
often, reimbursement filings for new drugs must adhere to these and might be
denied if this is not the case. Indeed, in the Netherlands, Gardasil® (4-valent
Human Papillomavirus (HPV) vaccine) has been denied reimbursement within the
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reference pricing system for individual use due to an inadequate PE reimburse-
ment file (www.cvz.nl). In particular, absence of full and adequate SA on all
parameters considered relevant was the primary critique.

After discussing the PE guidelines around the world, this chapter will focus
on the terminology surrounding SA. All types will be formally defined and
illustrated, often using work on the HPV vaccine. Next to the different types
of SA, scenario analysis will be discussed as yet another technique that is
sometimes seen as part of SA, however, does exhibit its own specific features,
warranting separate consideration and explicit distinguishing from SA.

13.2 PE GUIDELINES AROUND THE WORLD

Various countries around the world have now specified PE guidelines on how to
perform a state-of-the-art and good-practice PE analysis. Often, these PE guide-
lines are formally required for drug reimbursement files submitted by manufac-
turers to local and national authorities, for example, to have a new drug
admitted to reference pricing systems. The International Society for Pharma-
coeconomics & Outcomes Research (ISPOR) has summarized the PE guidelines
for those countries that have them available. Table 13.1 shows country-specific
guidelines referring to SA, both regarding ranges and values for parameters to
be investigated and regarding exact methods to be used (Table 13.1 is directly
taken from the website www.ispor.org, by selecting countries and individual
guidelines). Notably, some countries that do have PE guidelines lack specific
ones for SA. In particular, this was the case for Australia, Denmark, Israel,
Russia, Taiwan, and South Korea. All other countries included in ISPOR’s
overview do specify formal requirements for SA.

Table 13.1 shows that PE guidelines often require that SA be undertaken
“for key (uncertain) variables over plausible ranges or 95% confidence inter-
vals for parameter values if available.” Regarding the techniques, all types are
generally advised:

• One-way or univariate SA, in which one (key/uncertain) parameter is
varied at a time;

• Two-way or bivariate SA, if two parameters are both varied at the
same time;

• Multivariate SA, if multiple parameters (notably more than two) are
varied at the same time;

• Best-case analysis, reflecting a specific type of multivariate SA in which
all parameters are set at those values in the pre-specified ranges to
render the most favorable cost-effectiveness ratio;

• Worst-case analysis, reflecting a specific type of multivariate SA in
which all parameters are set at those values in the pre-specified
ranges to render the most unfavorable cost-effectiveness ratio; and

• Probabilistic SA, also referred to as Monte Carlo analysis, reflecting
the most comprehensive type of analysis in which, for all key and
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uncertain parameters, probability distributions are specified and mul-
tiple simulations are performed. Now that we have noted its import-
ance, illustrated by the inclusion of specific requirements for SA in
PE guidelines, the different types of SA will be discussed in the next
sections, in many cases illustrated by work on the HPV vaccine pub-
lished in a supplement of the journal Vaccine [1].

13.3 SENSITIVITY ANALYSIS

SA is often explicitly differentiated from the so-called “base-case analysis [2].”
In the base case, parameter values are all set at their most likely values. Base-
case parameter values result in the base-case estimate for the cost-effectiveness
ratio, typically representing a point estimate. For example, in their analysis on
multi-regional health-economic outcomes of HPV vaccination, Rogoza et al.
estimated base-case cost-effectiveness of HPV vaccination at 12 years of age at
€22,672 per life-year gained (€18,472 per QALY) and £21,962 per life-year
gained (£18,037 per QALY) for the Netherlands and the UK, respectively
(Table 13.2) [3].

Also, it is often argued that parameter values should be set conservatively
in the base case if uncertainty is high and specification of most-likely values
is difficult. For example, for the HPV vaccine, exact full duration of protec-
tion is obviously not yet known given the current maximum length of clinical
trials at around 6 years. It could, thus, be argued that base-case analyses on
the cost-effectiveness of the HPV vaccine should not use durations of protec-
tion beyond 6 years, let alone lifelong protection, despite the knowledge that
protection is still high after 6 years and is not likely to wane within the next
few years. Alternatively, a most likely and probably still conservative period
of 10 years could be used.

Taking another look at Table 13.2, it classically presents point estimates for
cost-effectiveness. Obviously, this is not the only information that we want;
base-case numbers alone do not provide us with all of the information required
for full insight into decision-making regarding, for example, reimbursement of
the HPV vaccine. SA typically adds crucial information to the base-case analysis:
(i) it shows how a plausible range for uncertain key parameters translates into
ranges for cost-effectiveness rather than point estimates only and (ii) it shows
how changes in the input parameters affect the cost-effectiveness outcomes.

13.3.1 DETERMINISTIC SA

All SAs, except for probabilistic SA, are sometimes labeled as deterministic. In
uni-, bi-, and multivariate SA, generally, probabilities, rather than full density
functions (often represented as histograms of probability distributions of con-
tinuous random variables), are applied. In fact, pre-defined inputs for parameter
values are entered into the PE model and outcomes for these inputs are listed.
If all key parameters are varied, one-by-one, using such predefined ranges
(e.g., plus and minus 20% of base-case values), the SA is univariate or one-
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way. One-way SA is often represented using Tornado diagrams. Figure 13.1
shows an example of a Tornado diagram for an analysis of HPV vaccination –
again of young teenage girls – in this case for Ireland. The Figure is extracted
from Suárez et al. in a specific multi-regional analysis on HPV vaccine cost-
effectiveness, with specific focus on vaccine characteristics and alternative vaccin-
ation assumptions and scenarios [4]. As such, the paper uses SA as an instrument
to investigate impacts of alternative characteristics and assumptions. It clearly
shows that the price of the vaccine is an important and influential parameter;
however, cost-effectiveness in this analysis is most sensitive to the discount rate.

Figure 13.2 shows an example of a bivariate, or two-way, SA, also extracted
from Suárez et al. [4]. In this particular case, the percentage of cross-protection

TABLE 13.2

Per Woman Discounted Total Lifetime Costs, QALYs, and Life Years (LYs),
with Discounted and Non-Discounteda Cost-Effectiveness Ratios for Current
Screening and Vaccination Compared with Current Screening in Five
Regionsb

Canada Netherlands Taiwan
United
Kingdom

United
States

Costs

No vaccine CA$906 €123 NT$4112 £216 US$2144

Vaccine CA$1163 €403 NT$14,911 £409 US$2232

Incremental CA$258 €280 NT$10,879 £193 US$87

QALYs

No vaccine 28.689 42.344 27.759 25.518 28.359

Vaccine 28.700 42.359 27.776 25.529 28.370

Incremental 0.011 0.015 0.017 0.011 0.011

LYs

No vaccine 28.696 42.348 27.763 25.521 28.365

Vaccine 28.704 42.360 27.777 25.530 28.372

Incremental 0.008 0.012 0.015 0.009 0.008

Incremental cost-
effectiveness

Discounted, per QALY CA$22,532 €18,472 NT$632,559 £18,037 US$7828

Discounted, per LY CA$31,817 € 22,672 NT$738,972 £21,962 Dominatesc

Undiscounted, per QALY CA$1249 € 5679 NT$93,508 £1449 US$11,156

Undiscounted, per LY CA$1554 € 6785 NT$105,267 £1627 Dominates

Source: Rogoza et al. [3], Only Slightly Adapted Lay-Out, Reproduced with Permission.
a Costs, LYs, and QALYs are discounted according to region-specific guidelines (www.ispor.org).
b Results are expressed in country- or region-specific currencies.
c Vaccination and screening are cost saving and more effective compared to screening alone.
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for some non-vaccine serotypes was investigated in conjunction with discounting
outcomes against Polish PE guideline values versus undiscounted outcomes. It
can be seen from the lines that the undiscounted results are quite insensitive to
inclusion of assumed cross-protection, whereas the discounted results do show
some relevant sensitivity. Two-way SA is typically represented by different lines,
as in Figure 13.2. Alternatively, a 3-dimensional graph can be constructed, as
was done, for example, by Hubben et al. to depict the dependencies on discount
rates for health and costs separately for infant pneumococcal vaccination in the
Netherlands (Figure 13.3) [5, 6].

50%40%30%20%

100,000 zł
80,000 zł
60,000 zł
40,000 zł
20,000 zł

0 zł
10%0%

FIGURE 13.2 Two-way sensitivity analysis on the incremental cost-effectiveness (Zloty/
QALY) for vaccinating young teenage girls against HPV in Poland: discounting (squares)
or non-discounting (diamonds) versus percentage cross-protection against some non-
vaccine serotypes at efficacies from 0 to 50%, line represents the potential threshold for
favorable cost-effectiveness at 3 times GDP per capita (Source: Suárez et al. [4], figure
legend slightly adapted to suit this paper, reproduced with permission).

baseline
Discount rate (0—5%)

Vaccine cost (—/+ 20%)

HPV incidence (+/— 20%)

Vaccine efficacy (+/— 20%)

% HPV 16–18 in cancer (+/— 20%)

Disutility (+/— 20%)

Є60,000Є40,000Є20,000Є0

FIGURE 13.1 Tornado diagram of multiple one-way sensitivity analyses on the incre-
mental cost-effectiveness (€/QALY) for vaccinating young teenage girls against HPV in
Ireland: sensitivity analysis on parameter uncertainty and variability by varying each
parameter ±20% and the discount rate between 0% and 5% (Source: Suárez et al. [4],
figure legend slightly adapted to suit this paper, reproduced with permission).

Sensitivity Analysis 235



Rozenbaum et al. typically present a best-case and a worst-case cost-
effectiveness for their analysis on antenatal HIV testing in the Netherlands [7].
Taxonomy in best- and worst-case analyses can sometimes be a bit counter-
intuitive as, for example, in this specific publication, a higher prevalence of HIV
among pregnant women contributes to an improved cost-effectiveness. Yet,
a higher prevalence is difficult to be envisaged as “best” in many other respects.
In particular, the authors estimated that antenatal HIV testing would cost
€6495 per life-year gained in the best case (maximum cost-effectiveness ratio),
whereas antenatal testing would be cost saving in the worst case.

13.4 PROBABILISTIC SA

Probabilistic SA concerns the assignment of formal probability distributions
or density functions to specific parameters in the model. Probabilistic SA is some-
times referred to as stochastic SA. This type of analysis was first suggested by
Doubilet et al. [8]. Generally, these probability distributions are designed for the
mean values of the selected parameters (second-order SA), rather than for the
sample data from which the estimated mean is derived (first order). Using these
distributions, typically 1000 or more simulations are done using random draws
from the defined distributions in each simulation. Each individual one (often
referred to as “replicate”) from these multiple simulations translates into an
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FIGURE 13.3 Two-way sensitivity analysis on the incremental cost-effectiveness in €
per life-year gained (LYG) for vaccinating infants with the 7-valent pneumococcal conju-
gate vaccine in the Netherlands: discounting of costs (on x-axis) versus discounting of
health (effects) (Sources: Hubben et al. & Postma [5] [6], figure legend slightly adapted to
suit this paper, reproduced with permission).
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estimate of the incremental cost-effectiveness ratio. Again from the study by
Suárez et al. [4], Figure 13.4 shows a scatter plot of 10,000 replicates around the
base-case estimate of cost-effectiveness for vaccinating young teenage girls against
HPV in Ireland. Both non-discounted as well as discounted outcomes using
a 3.5% discount rate (according to the UK PE guideline) are shown.

Probabilistic SA is often further represented in a cost-effectiveness acceptabil-
ity curve (CEAC). The CEAC shows, for a range of acceptability or willingness-
to-pay (often denoted with λ), the proportions in the scatter plot, which are
below each individual λ. Figure 13.5 shows the corresponding CEAC to the scat-
ter plot in Figure 13.4. Additionally, a CEAC with 2% discounting is included in
the Figure, possibly better reflecting the Irish underlying time preference (see
Chapter 11 on discounting). For example, it can be read that with a discount rate
of 3.5%, approximately 80% of replicates correspond to a cost-effectiveness
ratio below €50,000 per QALY. Also, 95% of replicates, or more, provides an
acceptable cost-effectiveness if λ is chosen at €40,000 or over using a discount
rate of 2%.

0% discount

Replicates in the bottom right hand quadrant indicate QALYs gained at a reduced cost;
replicates in the top right hand quadrant indicate QALYs gained at an increased cost.

Δ costs

ΔQALY

ΔQALY

I: 78.2%

II: 21.8%

I: 99.9%

II: 0.1%

3.5% discountΔ costs

0.2 0.4 0.6

0.2 0.4 0.6
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FIGURE 13.4 Scatter plot from the probabilistic sensitivity analysis on the incremental
cost-effectiveness (€/QALY) for vaccinating young teenage girls against HPV in Ireland:
non-discounted (0%) and discounted (3.5%) results are shown for the base case (x) and
for 10,000 replicates (diamonds), I and II represent the first two quadrants from the cost-
effectiveness plane, no replicates in the other two quadrants (Source: Suárez et al. [4],
figure legend slightly adapted to suit this paper, reproduced with permission).
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Of course, the major issue in probabilistic SA concerns the exact choice and
specification of the probability distributions for the mean parameter values. In
the absence of adequate information, often uniform or triangle distributions are
taken over plausible ranges with the base-case parameter values as midpoints or
expected values. In particular, for both of these types of distributions, a minimum
and maximum are defined, with equal probabilities for each value in between for
the uniform distribution and increasing probabilities from the minimum or max-
imum if moving to the pre-defined top of the triangle. Also, referring to the cen-
tral limit theorem, normal distributions are often considered. Indeed, Suárez
et al. [4] used uniform distributions for parameters such as unit costs and
screening coverage, and normal distributions for vaccine effectiveness and sen-
sitivity of screening. De Vries et al. [9] used normal and triangle distributions
for transition probabilities in the decision tree reflecting progression to aspergil-
losis and candidosis underlying their analysis of cost-effectiveness of itracona-
zole prophylaxis against invasive infections for neutropenic cancer patients.
Also, Postma et al. [10] used normal and uniform distributions for average
length of stay, antibiotic prescriptions, and indirect costs of production losses in
their analysis of the cost-effectiveness of treatment with oseltamivir for influ-
enza patients. Additionally, in line with theories underlying the formal estima-
tion of relative risks (RR), they used lognormal distributions for RRs regarding
advantages of oseltamivir treatment on antibiotic prescriptions, hospitaliza-
tions, deaths, and production losses.

Briggs advocates the use of beta distributions for specific parameters [11].
Beta distributions model events that take place within minimum and maximum
values. Given their natural limitation between 0 and 1, these distributions are

100%
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140,000120,000100,00080,00060,00040,00020,0000

Discount 3.5%
Discount 2%
Discount 0%

FIGURE 13.5 Cost-effectiveness acceptability curve on the incremental cost-
effectiveness (€/QALY) for vaccinating young teenage girls against HPV in Ireland for
three levels of discounting with willingness-to-pay (λ) on the x-axis, represented by
€/QALY, and the proportion of replicates below the λ threshold on the y-axis; corres-
ponding to the scatter plot in Figure 13.4 (Source: Suárez et al. [4], figure legend slightly
adapted to suit this paper, reproduced with permission).
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particularly suitable for risks (e.g., of dying or hospitalization). In particular, in
an analysis on beta-blocker therapy for chronic heart failure, beta distributions
were used for risks of initial, 2nd, 3rd, and 4th or more hospitalizations and for
risks of dying at home or in hospital, next to lognormal distributions for RRs
and normal distributions for unit costs [11].

With the majority of PE models being defined in MS ExcelTM and TreeAge
Pro (TreeAge Software Inc.), it is relevant to briefly consider how both pack-
ages facilitate PSA. In particular, PSA is a built-in feature of TreeAge Pro,
with a function of Monte Carlo analysis as an explicit analytic option. For
Excel, several add-ons that allow PSA exist. For example, @Risk (Palisade)
has been explicitly developed and often used for this purpose [10].

13.5 SCENARIO ANALYSIS

Not always formally distinguished as such, it does make sense to briefly consider
scenario analysis as a specific type of SA. Scenario analysis is sometimes defined
as exploring possible future paths given specific decisions and actions taken in the
present. PE modeling, in a sense, also involves present decisions – for example, on
which social time preference to choose, which price to set for a new drug – with
impacts on cost-effectiveness in (near) future years. Some of the parameters in the
model merely reflect decisions by policy makers (which discount rate to choose),
manufacturers (pricing), and other stakeholders. These parameters can thus be
seen as reflecting instrumental variables, i.e., instruments with which cost-
effectiveness can be guided, rather than chance variables impacting probabilistically
on the cost-effectiveness outcome. Varying these instrumental variables/parameters,
therefore, also reflects the results of choices more so than the results of uncertainty.

For those parameters reflecting instrumental variables in the PE model, it
wouldn’t make sense to include them in PSA. The effects on the outcomes of
varying this set of parameters could be labeled scenario analysis and would typ-
ically closely resemble a univariate SA on these parameters. The discount rate
and prices of the new product investigated (e.g., of the HPV vaccine) are typical
examples of parameters not to be included in PSA but in scenario analysis. As
scenario analysis obviously closely resembles univariate SA, it is indeed often
done as part of univariate SA and not formally distinguished as such.

13.6 SUMMARIZING

This chapter reviewed methods currently used in SA for PE models. In par-
ticular, we considered deterministic versus probabilistic SA, univariate versus
multi-variate analysis and scenario analysis as a specific form of SA.
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14.1 INTRODUCTION

Recent years have seen a proliferation of health technology assessment (HTA)
policies and practices being implemented around the world. HTA agencies
have been created to provide formal structures and processes for decision-
making about the pricing and reimbursement of pharmaceuticals. In many
countries, pharmacoeconomic studies are a requisite component of reimburse-
ment consideration. Countries with diverse institutional and cultural profiles
have adopted HTA policies and have, in light of this diversity, pursued differ-
ent tactics [1]. This variation extends to the ways in which pharmacoeconomic
analyses are conducted and considered.

The proliferation of HTA around the globe provides a wealth of insight
and experience on the use of pharmacoeconomics. As countries without
formal HTA processes become the exception, rather than the rule, there is an
interest from such jurisdictions in the adoption of HTA more fully. Perhaps
the most notable absence of publicly funded centralised HTA is in the United
States, where many policymakers have remained sceptical or even belligerent,
and the influence of pharmacoeconomic analyses has been limited (see more
on this later in the chapter). Likewise, the growing international experience
provides lessons for established HTA bodies in addressing current and future
challenges.

HTA is arguably lacking in a standard definition [2]. However, we can
assert that it is fundamentally about determining the value of health technolo-
gies. HTA is an evidence-based multidisciplinary endeavour that should sup-
port transparent and unbiased decision-making [3]. Decision makers are often
tasked with allocating fixed budgets, meaning that it is necessary to consider
costs as well as consequences for health outcomes – and other societal object-
ives – in order to achieve an efficient health system. In this regard, pharma-
coeconomics has become a cornerstone for the assessment of health
technologies, informing appraisal decisions.

In this chapter, we provide a broad overview of HTA experience around the
globe, considering some of the lessons that might be learned by existing and
future HTA bodies alike, with a focus on the ways in which HTA bodies have
used pharmacoeconomic analyses to support decision-making.

14.2 THE GLOBAL DEVELOPMENT OF HTA

14.2.1 EUROPE

The first HTA initiatives in Europe began in the 1970s as a response to
increasing concerns about the cost and quality of health care, equity in access
and ethical questions around the use of health technologies [4]. In this period,
health economists and health systems’ stakeholders took part in cross-national
meetings and conferences, which aimed to establish consensus on the need for
a comprehensive and systematic assessment of the way in which investments
in health care are made [5].
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These initiatives led to the establishment of the first national HTA agency,
the Swedish Council on Health Technology Assessment (SBU). Created in
1987, the SBU was mandated to inform the Swedish government about the
value of health technologies. In the decade that followed, other European
countries, such as Denmark, Finland, Norway, Spain and the United King-
dom, formally set up their own agencies and began to refine the concepts and
various possible designs of HTA [6, 7]. By the mid-2000s, HTA had gained
mainstream popularity as a policy tool to inform the allocation of healthcare
resources. Many more countries in Europe started to build national HTA cap-
acity, often in the form of institutions financed by public resources but with
independent status and adopting an advisory role [6].

The National Institute for Health and Care Excellence (NICE) in the
United Kingdom has become one of the most influential HTA bodies in the
world. NICE was established in 1999 to issue guidance on the use of health
technologies to the National Health Service (NHS) in England and Wales. As
part of NICE’s technology appraisal processes, manufacturers prepare submis-
sions in accordance with the institute’s methodological guidelines. In general,
submissions include decision-analytic cost-effectiveness models (see Chapters
1, 2, 4 and 7 for more on this topic) that estimate the cost per quality-
adjusted life year (QALY) gained.

In most Western European countries, HTA is a well-established and
advanced decision-making tool in healthcare policymaking. However, in Cen-
tral and Eastern Europe (CEE), HTA is in an earlier stage of development. In
some countries, including Hungary and Poland, the role of HTA is recognised
and investments to build a national capacity have been undertaken. Yet, most
CEE countries have not implemented comprehensive and transparent deci-
sion-making frameworks [8, 9]. Weak HTA structures and a lack of clear
roadmaps have left health decision-making in CEE susceptible to political
influences. Additionally, where local evidence is scarce and international HTA
findings are used without the necessary adaptations, the assessments may
result in biased decisions [8].

Since the early days of HTA, the European Union (EU) has played an
important role in the development and expansion of HTA. In the 1990s and
early 2000s, the EU funded four key cross-national initiatives that explored
opportunities for joint assessment, improvement and harmonisation of HTA
methods, effective dissemination and increased impact of findings among
European countries [5]. These were the EUR-ASSESS (1994–1997), the HTA
Europe (1997–1998), the ECHTA/ECAHI (1997–1999) and the European net-
work for HTA (EUnetHTA) Projects (2006–2008). The original EUnetHTA
Project took place under the auspices of a network of public HTA agencies
and academic institutions, as well as ministries of health and international
organizations. The network that forms the basis of EUnetHTA is still active
today and counts over 80 member institutions throughout 28 European
member states [10]. A notable achievement of the EUnetHTA Project has
been the HTA Core Model, an assessment framework formed by nine
domains covering clinical, organizational, economic and patient aspects of
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health technologies [11]. The framework was developed to improve collabor-
ation among HTA agencies by encouraging non-duplication of evidence and
to improve the transparency of procedures and usability of the available evi-
dence across European countries.

Over time, EUnetHTA has grown and continued to receive funding for
activities targeting the global development of HTA and cross-border HTA col-
laboration, such as the EUnetHTA Collaboration (2009) and three consecutive
EUnetHTA Joint Action (JA) programmes (2010–2012; 2012–2015;
2016–2020). These programmes have made contributions towards the practical
uptake and improvement of the HTA Core Model. For example, the HTA
Core Model has been used in several joint assessments, where a chosen
number of new pharmaceuticals is appraised collectively by EUnetHTA part-
ners of different European countries and the results can be adapted for use in
national contexts [11].

14.2.2 ASIA

During the past few decades, there has been growing recognition of a role for
HTA in the pricing and reimbursement of new health technologies in Asia. In
the 1990s, South Korea was the first country to introduce economic evalu-
ations as part of its decision-making process, based on the practices of coun-
tries with established HTA processes such as Australia, Canada and the
United Kingdom [12]. South Korea’s healthcare infrastructure is relatively well
developed compared to many other countries in Asia [13], with a universal
national health system in place since 1989. HTA assessments are currently car-
ried out by the National Evidence-based Healthcare Collaborating Agency
established in 2009.

As a lower middle-income country, Thailand was an early adopter of HTA,
with several initiatives from the 1990s onwards [14]. Thailand’s Health Inter-
vention and Technology Assessment Program was established in 2007, both
generating and reviewing cost-effectiveness evidence, and the country recently
published formal HTA guidelines [15].

Asia’s largest economies – China, India and Japan – have recently begun to
formalise economic considerations into healthcare decision-making. Universal
health coverage has been available in Japan since 1961, with the entire popula-
tion covered by either public or association-managed health insurance. Evi-
dence from economic evaluations has in principle been included in the process
for the reimbursement of new medicines in Japan since 1992, with relevant
data submitted to the Ministry of Health, Labour and Welfare (MHLW).
However, a lack of clear rules regarding how this information would be used
in the pricing of new drugs meant that assessments were rarely actually sub-
mitted, and for the most part were used to compare prices, as opposed to
assessing cost-effectiveness [16]. A new formalised system was introduced in
2019 [17]. The Central Social Insurance Medical Council (Chuikyo),
a separate body within the MHLW, provides recommendations for pricing of
medical products. The drug pricing system in Japan remains complex and
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includes criteria under which a premium (up to 90%) may be applied for
drugs that are considered innovative [18].

For both South Korea and Japan, the availability of health outcomes data
is a strength in facilitating further development and implementation of HTA.
However, challenges remain with respect to the consistency in the way that
cost-effectiveness outcomes are assessed, as well as the ways in which HTA
outcomes are incorporated into pricing and reimbursement decisions. One
possible barrier to the consistent use of cost-effectiveness evidence in Asian
countries is the lack of a universal health system, such as in the cases of
China and India.

While the majority of China’s population (around 97%) are covered under
three public health insurance schemes, these schemes are funded and managed
separately, with funding pooled at various government levels, resulting in dif-
ferent reimbursement rates [19]. Recently, there has been more political coord-
ination at the national level, with responsibility designated to the National
Health Commission in 2018. The China National Health Development
Research Centre, established in 1991, has more recently launched an evidence
network to support HTA through providing a framework for pooling and
integrating HTA resources at the national level. The network also seeks to
engage internationally to share experience and skills [19].

In India, the health system is complex and fragmented, with only a small
proportion of people covered by government schemes, and decision-making
for health technologies has not historically been employed at the national
level. The recent establishment of a dedicated HTA body (HTAIn) has formed
part of the effort by the Ministry of Health and Family Welfare to incorporate
HTA into health sector decision-making [20].

In general, there has been a shift in Asia towards increased incorporation
of HTA processes in decision-making for new health technologies. Countries
in Asia conducting HTA have largely followed the processes developed by
countries with established HTA bodies. For instance, Singapore established
the Agency for Care Effectiveness in 2015, relying on the expertise of HTA
specialists from Australia, Canada and the United Kingdom through the
appointment of an International Advisory Panel; however, it is recognised
that there is currently a gap in local capabilities to perform such assess-
ments [21].

14.2.3 THE REST OF THE WORLD

Australia was a forerunner in HTA and has influenced many other countries.
Pharmacoeconomic studies have been part of manufacturers’ submissions to
the Pharmaceutical Benefits Advisory Committee (PBAC) since 1993. The
PBAC’s recommendations are used as the basis for listing drugs on the
Pharmaceutical Benefits Schedule, which receive public subsidy. Manufactur-
ers’ submissions are prepared in accordance with guidelines provided by
PBAC and assessed by an independent review group. A decision is made to

Pharmacoeconomics in Drug Reimbursement 245



recommend the listing of the drug – or to reject or defer the application –
with the final price agreed upon by a separate committee.

Canada also has a strong commitment to HTA, with organisations origin-
ally developing at the provincial level. The Canadian Agency for Drugs and
Technologies in Health (CADTH) was established in 1989 and has evolved to
become the central agency for the coordination of HTA in Canada, providing
guidance on methodological standards for manufacturer submissions.
CADTH was established with the goal of standardising access to new drugs
across the country, though provincial decision-making remains strong, with
some provinces occasionally adopting a view that diverges from the CADTH
recommendation.

The United States has historically had a decentralised and fragmented set
of HTA processes and policies. The Effective Health Care programme at the
Agency for Healthcare Research and Quality reviews evidence and generates
analytic tools. The Centers for Medicare and Medicaid Services hosts the
Medicare Coverage Advisory Committee, with each state Medicaid pro-
gramme employing some form of HTA and some participating in the Drug
Effectiveness Review Project. In the private sector, pharmacy benefit managers
and other companies undertake HTA operations. More recently, both private
and public sector stakeholders have begun to make use of recommendations
by the Institute for Clinical and Economic Review (ICER), which was
founded in 2006 as an independent organization. It has grown to prominence
in recent years as pharmaceutical pricing has developed into a mainstream
political issue. ICER review evidence and conduct de novo pharmacoeconomic
analyses to support their recommendations about the value of health tech-
nologies (see Chapter 15 on value-based pricing).

There are now very few parts of the world without any form of HTA used
to guide reimbursement decision-making. Even in resource-constrained set-
tings, low-income countries are using HTA methods at the national level,
including the consideration of cost-effectiveness evidence [7].

14.3 THE ROLE OF PHARMACOECONOMICS IN HTA

Many HTA agencies have evolved following a similar set of core objectives,
but the underlying structures and operational protocols vary substantially [4].
For example, European HTA agencies differ with respect to the target audi-
ence (e.g. national, regional or hospital-based), the scope of the assessments
(e.g. pharmaceuticals, models of care, medical devices), their mandates and
their linkage with the decision-making process [22]. In practice, this diversity
reflects the variety of objectives, financing mechanisms and roles of health sys-
tems across countries [22, 23]. With many countries adopting HTA processes
with different features, the role of pharmacoeconomics in HTA varies. In this
section, we consider some of the key defining features in the role of pharma-
coeconomics in HTA.
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14.3.1 SCOPE

HTA agencies in Europe are generally autonomous bodies with either an
advisory or regulatory function. Regulatory function refers to controlling
and monitoring quality, safety and efficacy of health technologies. The Ital-
ian Medicines Agency, for example, has both advisory and regulatory func-
tions. The results of assessments can inform coverage recommendations in
a binding or non-binding way and pricing either directly or indirectly [24].
Non-binding recommendations are used in Germany, where results of clin-
ical or economic evaluations are used to inform the negotiation of price
premiums. In England, the outcome of HTA decision-making can have an
indirect impact on pricing, as reimbursement status does not affect price,
but prices can determine estimates of cost-effectiveness that in turn deter-
mine reimbursement status. These characteristics determine the extent to
which pharmacoeconomic analyses can directly inform reimbursement
decisions.

A distinction should be drawn between assessment, which is the process of
evaluation and synthesis of the evidence, and appraisal, which is the produc-
tion of coverage recommendations based on the results of the assessment and
other criteria considered relevant. Some countries have separate agencies to
deal with the assessment and appraisal stages. In Germany, for example, the
Institute for Quality and Efficiency in Healthcare (IQWiG) is responsible for
evaluating the evidence, while the appraisal is carried out by the Federal Joint
Committee (G-BA).

HTA can be applied to all health technologies or only pharmaceuticals or
medical devices. The majority of the HTA agencies in Europe focuses on phar-
maceuticals [25]. In England, NICE appraises a subset of new pharmaceut-
icals, chosen by the Department of Health and Social Care in consultation
with NICE, based on priority criteria. The Scottish Medicine Consortium
assesses all new medicines that receive regulatory approval. A topic selection
process informs the choice of these technologies based on criteria such as
budget impact (see Chapter 8) or uncertainty (see Chapter 13) of the bene-
fits [24].

The geographical scope of HTA can also vary, typically being either
national or regional, but it can also be performed in local settings, such as
hospitals. In Italy and Spain, for example, some hospitals have experimented
with hospital-based HTA to evaluate the clinical, financial and organizational
impact of technologies on the hospital unit [22, 26].

14.3.2 MANDATES

With respect to the role of pharmacoeconomics in reimbursement decision-
making, HTA agencies can be broadly grouped into three categories: those
that mandate the consideration of cost-effectiveness evidence, those that allow
it, and those that do not.

Pharmacoeconomics in Drug Reimbursement 247



All HTA agencies are concerned with estimating the added clinical benefit
of a technology. Some countries, such as France, Germany and Italy, focus
primarily on the evidence for incremental therapeutic value, as demonstrated
by clinical effects from randomised controlled trials compared to the existing
standard of care. Other countries, such as England, Sweden and New Zealand,
explicitly focus on cost-effectiveness, measured using the incremental cost-
effectiveness ratio, where incremental health effects are compared to incremen-
tal costs relative to existing treatments. In these countries, QALYs are usually
the preferred outcome measure to identify comparable evidence of clinical
effectiveness. In countries that don’t formally require evidence on economic
impact, it may be considered in special cases, such as where there is high
expected budget impact and significant incremental therapeutic value (e.g.
France), or for use in price negotiations (e.g. Italy).

Most Organisation for Economic Co-operation and Development (OECD)
countries mandate the submission of cost-effectiveness evidence as part of the
drug reimbursement decision-making process, while others (e.g. France, South
Korea) will consider the cost of a new technology and yet others (e.g. Luxem-
bourg, United States) mandate against the consideration of costs [27].

14.3.3 GUIDELINES

In order to support manufacturers’ submissions, many agencies provide guid-
ance on the preparation of cost-effectiveness evidence and the use of pharma-
coeconomic methods. Such methodological guidelines help to achieve
consistency through standardised assessments.

As part of this guidance, some agencies provide a reference case, and some
newly established agencies, such as in India, are seeking to do the same [20,
28]. The use of a reference case is also recommended by researchers outside of
the decision-making context, including in the United States [29]. Most
methods guidance is used such that agencies will consider analyses that deviate
from the reference case so long as an analysis that is consistent with the refer-
ence case is also provided.

For those agencies that mandate the submission of evidence on costs, most
methods guidance recommends cost-effectiveness analysis, with many either
exclusively accepting (or, at least, preferring) cost-per-QALY analyses [30]. The
Pharmaceutical Management Agency of New Zealand (PHARMAC) is not-
able for its almost exclusive reliance on cost-per-QALY analyses. In some con-
texts (e.g. Germany), outcomes are specified but the methods for their analysis
are not prescribed.

14.3.4 THRESHOLDS

HTA bodies that mandate the submission of evidence on costs and mandate
the use of a particular health outcome could, in principle, establish
a threshold level for cost-effectiveness. However, most agencies do not expli-
citly specify a cost-effectiveness threshold [27], though some do. NICE uses
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a £20,000–£30,000 cost-per-QALY threshold, while ICER (see Chapters 8 and
15) specify technologies as providing high, intermediate or low value of care
according to their cost-per-QALY relative to a ‘health-benefit price bench-
mark’ range of $100,000–150,000 [31]. Thailand has become a reference point
for new HTA initiatives, as it is the only country in Asia to include an explicit
cost-effectiveness threshold as part of the assessment process [32].

Other countries define thresholds with reference to economic indicators.
For example, Slovakia specifies a threshold range according to average
monthly salary. Where agencies do not specify an explicit threshold, an impli-
cit threshold is often in use and can be identified through research [33]. For
instance, depending on severity of disease, technologies assessed in Sweden
have been shown to have a 50% chance of approval at either €79,400 or
€111,700 per QALY [34].

14.3.5 EQUITY CRITERIA AND MODIFIERS

HTA processes include considerations of wider societal or public health bene-
fits, equity impacts (e.g. disease severity, target population group), innovation
and budget impact (see below and Chapter 8). These aspects may enter the
appraisal phase rather than being systematically assessed as part of HTA pro-
cesses or being included in the estimation of cost-effectiveness. As such, they
may be considered implicitly or in non-systematic ways. For example, NICE
recognises a higher cost-effectiveness threshold for technologies that meet
‘end-of-life’ criteria. In Italy and Germany, severity is considered implicitly as
part of the added benefit assessment.

14.3.6 BUDGET IMPACT

Budget impact has become an increasingly important consideration in HTA, with
new treatments that appear to be highly cost-effective while potentially unafford-
able (see Chapters 1 and 8 for more information on budget impact). Different
countries have varied in their approach considering budget impact, which has
given rise to different approaches to reimbursement [35]. Budget impact tends to
be presented separately from cost-effectiveness estimates but can be an important
decision-making parameter in price negotiations. In England, NICE introduced
a budget impact test in 2017, which looks at the net budget impact of new prod-
ucts. Negotiations with NHS England are required for products with an annual
net budget impact of £20 million or more, in any of the first 3 years of its use in
the NHS. ICER specify an annual budget impact threshold, currently around
$820 million based on an algorithm with time-varying market-based factors.

14.4 LESSONS

Recent experience in the spread of HTA has demonstrated that policy solutions
can (and should) be context specific. Governments looking to introduce or expand
HTA processes need not simply adopt those from any single other country.
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Most HTA bodies operate at arms-length from the government and main-
tain some level of independence. This is particularly important when HTA
agencies make recommendations that are controversial and perhaps unfavour-
able to political goals. Yet, HTA bodies such as NICE, PBAC and CADTH
are often perceived as pursuing a payer’s agenda despite occasionally making
recommendations that are inconvenient to the government.

Independent conduct or validation of pharmacoeconomic analysis is there-
fore an important part of most HTA processes. Agencies use expert commit-
tees, patient representation and stakeholder involvement at various stages and
to varying degrees, and these can feed into the conduct or assessment of phar-
macoeconomic analyses.

A key feature of publicly funded HTA agencies is that they should be
accountable to the public. As a central part of HTA processes, pharmacoeco-
nomic analyses must be conducted with this accountability in mind. Therefore,
transparency in the use of pharmacoeconomic analysis is key. This transpar-
ency can also be extended to the analyses themselves.

Many HTA agencies provide methodological guidance for pharmacoeconomic
analysis, and this is a valuable tool in reimbursement decision-making. By provid-
ing guidelines, agencies ensure that internal, external and manufacturer-submitted
pharmacoeconomic analyses estimate the value of medicines in a consistent way.
Yet, many aspects of HTA methods guidelines remain contentious. A key ques-
tion in the use of pharmacoeconomic analysis to inform drug reimbursement is
the types of outcomes that are to be considered. Most HTA agencies explicitly
state the outcomes that will be considered in the decision-making process. Cost-
effectiveness thresholds need not be explicitly specified by an agency but can be
used implicitly. Explicit thresholds have the advantage of clarity but can create
pricing incentives and may restrict a flexible HTA process [36].

A common challenge in low-resource settings, including in South America,
Africa, Asia and to some extent Central and Eastern Europe, is that capacity for
HTA, in terms of human resources and expertise, is lacking [37]. Arguably, lower
income countries face greater opportunity costs from inappropriate decision-
making due to the availability of more limited healthcare budgets compared with
high-income countries. For this reason and given the lack of sufficient resources
to perform HTA, low- and middle-income countries ought to develop clear
national roadmaps and increase their involvement in multi-national projects.

While it is important that HTA processes consider the local context, previ-
ous experience has demonstrated the value of cross-national collaboration.
This may take the form of methodological alignment, shared capacity or col-
laborative processes to increase the efficiency of HTA.

14.5 CONCLUSIONS

HTA is a truly global phenomenon, and pharmacoeconomic analyses are an
increasingly routine input to national decision-making processes. The organ-
isation and authority of HTA bodies, and the nature of the work that they
conduct, vary between settings. Policymakers intending to create, formalise or
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extend the remit of HTA processes can look to other countries for inspiration.
Despite the importance of context-specific frameworks, there are several gen-
eral lessons from international experience to date. These include the need to
develop capacity (especially in low-resource settings), establish methodological
standards and employ transparent decision-making processes that are pro-
tected from undue political bias.
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15.1 INTRODUCTION

Value-based pricing (VBP) was first defined as basing the price of a drug on data
demonstrating its benefits and harms [1]. This has been broadened to encompass
‘any change to traditional payment models for drugs, regardless of the underlying
approach to determining the final price of the product’ [2]. It was originally devel-
oped for a single-payer setting, such as the United Kingdom’s National Health
Service, to aid in price determinations for novel drugs using a cost per quality-
adjusted life year (QALY) threshold of £20,000 to £30,000 and maybe even up to
£50,000 per QALY. However, in the United States, where a pluralistic system of
insurance providers makes for a great array of coverage options, such a schema is
not so straightforward. This chapter will discuss the use of VBP in the US and
Europe in terms of cost-effectiveness analyses (CEAs) and negotiating methods.

If one were to follow demand curve economics, there would be no single VBP
but instead a distribution of VBPs. One such way of going about this would be to
use value-based cost-effectiveness threshold analyses early in drug development to:
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• Calculate the minimum changes in clinical effectiveness needed to make
a new technology cost-effective for the average patient at various reim-
bursement levels based on results from pivotal randomized controlled
trials (RCTs), the published literature and burden of illness analyses; and,

• Support internal planning by providing thresholds against which to
judge cost-effectiveness given expected RCT results.

An example of this last bullet is an analysis to document expected improvements in
the clinical effectiveness measures of 1) change in intraocular pressure, 2) medica-
tion use and 3) procedure-related costs (including adverse events), – all RCT end-
points expected to be advantageous for a novel injectable for glaucoma. Given
assumptions for 2 of these outcomes, the model would then calculate the minimum
value of the third outcome needed for the new technology to be cost-effective. In a
similar type of analysis, Luttjeboer and colleagues recently published an interesting
threshold analysis to validate potential pricing of a therapeutic human papilloma-
virus (HPV) vaccine in the Netherlands [3] in which scenario testing for €20,000,
€50,000 and €80,000/QALY, targeting characteristics of the HPV test being used in
screening practice and vaccine efficacy based on RCTresults, was performed.

15.2 NEGOTIATION OF TRADE-OFFS

Pauly believes that the ‘real alternative [to simple cost-effectiveness thresholds]
is to revert to the negotiation model used to develop the UK VBP model’ [4].
He states that Medicare is the only US insurer with enough political clout to
be able to negotiate prices, although it is currently prohibited by law from
doing so. Since CEA is suggested, but not required, in the US for reimburse-
ment decisions, why is it gaining substantial traction in the US now in this
regard? There are 2 primary motivations for this:

• The development of value frameworks by prominent groups, includ-
ing clinician-led organizations; and,

• Publication of new CEA guidelines broadening suggested perspective
to include payers [5, 6]

15.2.1 THE DANCE AROUND SUPPLY AND DEMAND IN EUROPE

Pauly [4] discusses the concept of VBP for a ‘new break through’ technology with
no close substitutes in contexts (such as the US) where a single supplier sells its
products to various buyers. In this case, the supplier is effectively a monopolist and
enjoys corresponding ‘market power’. In this section, we look at the context (more
commonly found in Europe) where a single supplier sells its products to a single or
coordinated buyer. In this case, a bilateral monopoly exists, with the supplier enjoy-
ing monopolistic market power and the buyer enjoying monopsonistic market
power, implying that whether, and at what price, a technology is reimbursed is sub-
ject to negotiation [7]. At a given price, the monopolistic supplier can decide
whether they are willing to supply the technology, and the monopsonistic payer can
decide whether they are willing to reimburse the technology. If the supplier signals
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that they are unwilling to supply the technology at a price proffered by a payer, the
payer has to decide whether to offer a higher price or threaten not to reimburse the
technology. If the payer signals that they are unwilling to reimburse the technology
at a price proffered by a supplier, the supplier has to decide whether to lower their
price or to threaten not to supply the technology. Although the dynamics of
whether it is the supplier or the payer who offers a price may differ between juris-
dictions, ultimately the final agreed price will depend on the ability of each party to
issue credible threats to either not supply or not reimburse a technology [8–10].
Both parties will typically refer to various measures of value and to support their
position within the price negotiation; the credibility of threats not to reimburse
or supply will depend on the strength of the incentives and constraints that
each party faces.

Payers managing a constrained budget, in general, have a primary incentive
to obtain lower prices, as these will leave more money to fund other technolo-
gies and services. In some cases, this primary incentive may be tempered by
concerns about generating appropriate signals for future technology develop-
ment and considerations related to national industrial policy [9].

However, a decision not to reimburse a particular technology for an identi-
fiable set of patients may be controversial and lead to political pressure to
reverse the decision and, in some cases, judicial review. Conversely, there may
be concerns about budget impact (affordability) and the setting of precedents
for future reimbursement decisions if a technology is reimbursed [11].

In order to support a credible threat not to reimburse at a given price, a payer
may refer to a number of factors, including large budget impact, low magnitude of
incremental benefit, price of comparable products, price paid for the technology in
other markets, uncertainty in treatment outcomes, overall profitability of the sup-
plier, lack of cost-effectiveness given an established acceptable threshold, and, in
extremis, the potential for compulsory licensing. The relative importance given to
these factors varies between jurisdictions. Some payers emphasise budget impact,
whereas others give greater emphasis to cost-effectiveness and technical efficiency.
Some payers emphasise reference pricing and, by implication, the value attached
to technologies and strength of credible threats issued by other payers [12].

In contrast, suppliers in general have a primary incentive to maximise revenue.
In some cases, this primary incentive may be tempered by concerns about longer
term revenues, relationships with payers and the reputational damage of refusing
to supply a market. For suppliers, the range of acceptable prices is likely to be
constrained at the extreme by the variable cost of goods. In addition, suppliers
will be concerned regarding the effect of accepting a given price on the pricing
dynamics in other markets, particularly those that employ formal price referen-
cing. In order to support a credible threat not to supply at a given price,
a supplier may refer to a number of factors, including small budget impact, large
magnitude of incremental benefit, price of comparable products, price paid for
the technology on other markets, high cost of technology development and evi-
dence of cost-effectiveness given an established acceptable threshold, and deficien-
cies in the process of estimation of product value.
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Payers can strengthen the credibility of their threats not to reimburse at
a given price by establishing an accepted process to estimate the value of
a technology. Where the assessment of value is based on a formal assessment of
cost-effectiveness, credible threats not to reimburse are strengthened by the
research justifying the choice of the acceptable threshold. Credible threats not to
reimburse are further strengthened when the assessment of value is conducted by
an ‘independent’ institution. Correspondingly, we have seen many countries set
up ‘independent’ Health Technology Appraisal agencies evaluating the value of
technologies using published processes to provide support for reimbursement
decisions (see Chapter 14). In this sense, ‘value’-based pricing is an integral part
of the reimbursement landscape across Europe and increasing beyond [13].

VBP may be based on CEA with the application of an acceptable threshold
(e.g., an acceptable cost per QALY threshold) being used to define the maximum
effective price. If the threshold represents the opportunity cost of investment in
the technology being evaluated, this equates to an objective of promoting tech-
nical efficiency (in the generation of QALYs). If this objective is accepted as
a [political] priority within the healthcare system, this provides a strong basis to
issue credible threats not to pay more than the maximum price that is indicated
by the CEA. However, some argue that this approach is ‘over-generous,’ and that
such disclosure of the willingness to pay leads to manufacturers receiving all of
the available rent for a technology leaving no consumer surplus [14]. This
approach has been taken in the United Kingdom where decisions regarding reim-
bursement are based predominantly on estimates of cost-effectiveness at
a proposed price. Other countries have based their assessment of value, and hence
acceptable price, on other, arguably more qualitative, measures of benefit. For
example, in France, value of a new technology is assessed by the Haute Autorité
de Santé on the five-point Amélioration du Service Médical Rendu [Improvement
in Medical Benefit] (ASMR) scale, which runs from ‘ASMRV’ equating to ‘no
improvement’ to ‘ASMR I’ equating to major improvement (reserved for an
extremely few drugs that have demonstrated effect on mortality in a severe dis-
ease). This rating then translates into a determination of the acceptable price. For
example, a drug with a rating of ASMRV will only be listed if the price is less
than its comparable technologies, whereas drugs with an ASMR I, II or III may
achieve maximum allowable prices consistent with the rest of Europe.

Even where the assessment of value is based on CEA and an acceptable
threshold, it is not the only determinant of what is ultimately regarded as an
acceptable price. Within the United Kingdom, we have seen the introduction
of the end-of-life criteria (£50,000 per QALY), Cancer Drug Fund, and the
Highly Specialised Technologies process (£100,000–300,000 per QALY) that
apply thresholds higher than that which would optimize efficiency in terms of
QALYs generated within a fixed budget. These initiatives may be seen as
a response to political pressure and an ability to issue credible threats not to
pay at prices that would be indicated by an objective of technical efficiency.
Once such concessions have been made, they are likely to have a profound
impact on the ability to issue future credible threats not to pay as a specific
price based on estimated cost-effectiveness [10].
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Perhaps one disadvantage of VBP processes based on explicit quantitative
assessments of value such as cost per QALY is that any deviation from the
accepted threshold creates a strong precedent for future evaluations. In this
aspect, there is limited flexibility to respond to acute political pressures and
more subjective qualitative assessments of value may, perhaps counterintuitively,
lead to more robust VBP processes.

In addition to simple negotiations regarding price, other aspects of pricing
may be considered. For example, within the United Kingdom, complex Patient
Access Schemes may include individual response-based schemes where, for
example, payment is only made for patients who demonstrate a defined
response, where treatment for an initial period is free, or treatment after a given
period is free. Reimbursement may also be made contingent on future data col-
lection [15]. Examples of both types of schemes have been implemented in the
United Kingdom [16, 17].

At a Value Frameworks ISPOR summit held in Washington, DC (October,
2018), McClellan suggested that ‘applying value frameworks to systems of
care rather than technologies in isolation’ could help improve access and out-
comes and advance the transition to ‘value-based’ care systems [18]. Systems
of care could include, for example, wireless/remote personal health tools and
supportive telemedicine, lower cost methods or sites of care and better coord-
ination of team-based care. The use of open source models, which enhances
the ability, transparency and credibility of scenario analyses of cost-
effectiveness models in support of VBP, is a concept that has been explored
over many years but appears to be gaining some traction in both the US
[19–23] and EU (EUnetHTA[24, 25]); it is explored further in Chapter 17 of
this book.

15.3 USE OF COST-EFFECTIVENESS THRESHOLDS AS VBP
BENCHMARKS

The Institute for Clinical and Economic Review (ICER) in the US has begun
to set standards for cost-effectiveness in terms of cost per QALY using bench-
marks of <US$100,000/QALY, $100,000 to $150,000/QALY and >$150,000/
QALY for high, intermediate and low care value, respectively. Recently, they
have modified the cost-effectiveness threshold for ultra-rare diseases (condition/
label for fewer than 10,000 patients in the US, which is different from the EU
definition) up to $500,000/QALY, although the VBP benchmark remains at
$50,000 to $150,000/QALY and incorporates both societal and health system
perspectives in many of its deliberations [26]. Regeneron became the first com-
pany in the US to publicly adopt a VBP at market entry when it priced its drug
dupilumab (Dupixent®) in line with its ICER analysis [2]. Indeed, New York
State passed a landmark law in 2017 that allowed, for the first time in the US,
New York’s Department of Health (DoH) to refer drugs that exceeded the
10-year average inflation rate plus either 5% (2017–2018) or 4% (2018–2019) to
a state-wide Drug Utilization Review (DUR) Board created to authorize limits
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on prescription drug costs based on provided therapeutic value and deter-
mination of a target rebate amount [27, 28]. The board may consider drug
effectiveness, therapeutic alternatives and the seriousness and prevalence of
disease [27].

“If the state and manufacturer fail to agree on a rebate that is at least 75% of the
difference between the drug’s current price and [the calculated] VBP, the state may
waive provisions that currently require managed care plans to cover medically
necessary drugs in certain protected classes.”

Currently, the basic federal US Medicaid rebate for brand-name medica-
tions is greater than 23.1% of the average manufacturer price (AMP) or the
AMP minus the best price available to nongovernmental payers. The DUR
Board recently recommended that Medicaid pay just under $57 per unit for
lumacaftor/ivacaftor (Orkambi®, Vertex Pharmaceuticals), a price that
comes to <$150,000/QALY based on the ICER review and which is
a medication for cystic fibrosis (CF) [28] that lists for $186 per unit. This
$272,000 annual cost of Orkambi has been justified by the manufacturer on
the basis of its being the only drug in its class. The class effect limits the
state’s negotiating power with Vertex because, being the first in its class,
New York cannot remove the drug from its formulary, nor waive the pre-
scriber prevails provision of the Medicaid program that affords physicians
the final determination over whether a patient requires the drug. Indeed,
Vertex has indicated that it does not intend to negotiate further with the
state. The DoH is now charged with negotiating with Vertex and, if unsuc-
cessful, the DoH can demand internal information from Vertex about the
basis of its pricing. CF is a genetic condition that produces abnormally thick
mucus secretions, primarily in the lungs, predisposing to life-threatening
infections. It is designated as an orphan disease in the US because it affects
<200,000 people (roughly 30,000 people in the US), including 1,660 in
New York. New York’s Medicaid program covers about 1,000 CF patients;
about 1/3 of these are candidates for Orkambi.

Such analyses go towards a drug’s affordability. One cannot speak about the
VBP or comparative cost-effectiveness of a therapy without discussing its afford-
ability (see Chapter 8 on further discussion about budget impact and affordabil-
ity). In their review of 3 articles on the topic, Towse and Mauskopf aver that

affordability cannot be separated from the willingness to pay for and/or the oppor-
tunity cost of providing a new intervention. . .Discussion about the affordability of
a new health intervention usually means that there is a substantial associated
budget impact on a system [29]

15.4 VBP SCHEMA

There are various themes on VBP, including indication-specific pricing, out-
comes-based contracts, mortgage pricing and value-based insurance design,
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among others [2]. Two that are of particular relevance here are indication-
specific pricing and outcomes-based contracting. Indication-based pricing sets
prices based on the percentage of patients expected to be treated for one of
several indications. A form of stratified pricing (reimbursement based on
acceptable ICERs in subgroups[30]), although potentially attractive, espe-
cially to the manufacturer, may have negative connotations for price and
coverage if implemented without negotiation of both [30]. Indeed, from an
efficiency standpoint, ‘if the price is set according to a higher-value indica-
tion, payers may be reluctant to pay that price for lower-value indications,
thus restricting the use of the product to fewer indications and patients
(static inefficiency)’. Conversely, when prices are based on a lower value indi-
cation, industry will be reluctant to invest in research on higher value indica-
tions (dynamic inefficiency). Multiple authors have weighed in on the pros
(increased transparency leading to rational prices for drugs, potentially
lowering prices for lower value indications) and cons (higher prices for
patients who benefit the most, higher utilization for patients who benefit the
least, higher overall spending and manufacturer profits) of indication-based
pricing [29, 31–33].

15.5 EXAMPLES OF VALUE-BASED CONTRACTS

Outcomes-based contracting refunds the cost of a drug when it fails to achieve
the promised therapeutic effect in a specific patient. However, as demonstrated
by the outcomes-based contract of Amgen with Harvard Pilgrim for evolocu-
mab in heart failure patients, refunding for the approximately 7% of patients
who have a myocardial infarction or stroke would only lower the net price
from $14,000 per year to $13,620, hardly the cost savings envisioned with such
a schema [2, 34]. Clearly, as indicated by many colleagues, insurers and manu-
facturers need attractive solutions to implement VBP in the US, including
reduced restrictions on access, use of VBP benchmarks for initial pricing,
facilitated (or nonexistent) prior authorization for drugs priced at their VBP
threshold (or varied across multiple thresholds), reduction of or no consumer
cost-sharing requirements and placement in preferred formulary tiers without
co-insurance if these VBP benchmarks are met by manufacturers [29, 35].
ISPOR has convened a task force to address potential elements of next gener-
ation value assessment [36], including those in the following table:

TABLE 15.1

Next-Generation Value Assessment Considerations
• Unmet need
• Rare diseases
• New mechanism/potential for clinical extensions
• Equity for population subgroups with historically worse outcomes

(Continued )

Value-Based Pricing of Pharmaceuticals in the US and Europe 261



Other recent examples of new models to pay for costly treatments in the US
include (1) Alnylam Pharmaceuticals Inc’s calibration of the full $575,000 annual
value for its drug givosiran (Givlaari®) to treat acute hepatic porphyria, an
inherited liver condition in an estimated 3,000 patients in the US and Europe,
based on achieving outcomes similar to clinical trial results and numbers of treated
patients; (2) Sanofi’s program to provide insulins at a $99/month subscription rate;
(3) Novartis’ option for insurers to pay over 5 years in equal annual instalments
for onasemnogene abeparvovec (Zolgensma®) as a single injection for spinal mus-
cular atrophy and (4) Asegua Therapeutics LLC, a wholly owned subsidiary of
Gilead Sciences, Inc., and Abbvie agreeing to provide medications for hepatitis
C at a fixed annual cost to the states of Louisiana and Washington regardless of
the numbers of patients being treated [37, 38]. In the US, several measures have
gone into effect to promote availability of good quality real-world data/evidence
(RWD/RWE) to aid in value determination, including passage of the 21st Century
Cures Act, which directs the US Food and Drug Administration (FDA) to evalu-
ate the potential use of RWE to support approval of new indications for approved
drugs or to support/satisfy post-approval study requirements. In addition, the US
Prescription Drug User Fee Act VI requires the FDA to enhance use of RWE in
regulatory decision-making. Drafts guidances for both initiatives are expected by
the end of 2021 [36, 39]. Moreover, payment reform, such as the framework from
the US Healthcare Payment Learning and Action Network, is looking to use
such methods as bundled payments (e.g. chronic heart failure episode of care)
and specified populations (e.g. accountable care organizations (ACOs)) as
alternative payment models to fee-for-service to link healthcare payments to
quality and value [36, 40]. Challenges to implementation of VBP payment
models include determination of appropriate metrics to establish that out-
comes have been met and collection of data to confirm achievement of goals
(and trigger contractual terms). A recent study employed a modified Delphi
panel construct to establish consensus on indicators for a value-based contract
in multiple sclerosis [41]. In terms of data collection, although not a panacea,
the near ubiquity of electronic data sources (electronic medical records, claims
data, etc.) will help counter the challenge of documenting patient outcomes
during negotiations of a VBP.

TABLE 15.1 (Cont.)

• Labor productivity, e.g. depression treatment for employees
• Better adherence
• Better targeting, e.g. personalized medicine with genetic markers
• Contagion and fear of contagion, e.g. Ebola or Covid-19 vaccine
• Financial protection value for high-cost conditions
• Value of hope/some potential for cure, e.g. Duchenne Muscular Dys-

trophy treatments
• Option value, i.e. value of opportunity to benefit from future treatment
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16.1 INTRODUCTION

Disease management (DM) programs refer broadly to programs that seek to
improve the care of patients with specific chronic diseases by complementing their
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usual primary and specialty care with some variety of additional services. Also
called care management and care coordination, DM aims to address the common
failures of traditional episodic, symptom-based care of chronic diseases like
asthma and heart failure by teaching patients to manage their own disease,
increasing communication between multiple providers, and emphasizing proactive
prevention of exacerbations and complications of chronic disease. DM programs
typically target high-risk or high-cost patients; emphasize clinical practice guide-
lines; employ telephone support to monitor and motivate patients; and aim to be
cost-effective by reducing costly complications, hospitalizations, or emergency
visits [1].

The promise of DM rests on the observation that many patients with chronic
disease do not get all the evidence-based interventions that are indicated [2] and
often lack the understanding and skills they need to know how to manage their
disease, including how to adhere to their medications, when to seek out care, and
how to modify their lifestyles to slow disease progression. The DM industry has
grown because various programs have claimed positive financial returns on
investment, but the methods to assess the economic returns remain controversial.
There have been many initiatives to develop a consensus standard for the eco-
nomic evaluation of DM programs. Pharmacoeconomic (PE) approaches have
been applied to DM programs and to component interventions – largely through
observational studies offered by health plans, DM vendors, and academic
researchers – but the reliability and validity of many of the studies have been
questioned.

16.1.1 EVALUATIONS OF DM PROGRAMS

A number of comprehensive reviews of the literature on the cost implications
of DM programs have pointed out frequent flaws in published literature claim-
ing cost-savings. The Congressional Budget Office examined peer-reviewed
studies of DM programs for congestive heart failure, coronary artery disease,
and diabetes mellitus and determined in 2003 that there was insufficient evi-
dence to conclude that DM programs reduced overall health spending [3].
A systematic review of the literature by Ofman and colleagues [4] in 2004
found that relatively few studies of DM programs evaluated the effects on
healthcare utilization and costs and that, among the few studies that demon-
strated reductions in utilization or costs, findings were inconsistent, modest, or
failed to include program development and implementation costs. A review by
Goetzel found that DM programs may reduce direct costs in heart failure and
could be cost-saving in depression if productivity gains were included [5].
A RAND Corporation literature review in 2007 examined 317 unique studies
and found no evidence of improved cost-savings from DM programs [6].

The introduction of the Medicare Health Support (formerly the Voluntary
Chronic Care Improvement) Pilot Program raised hopes that a more rigorous
economic evaluation methodology using a randomized design with intervention
and comparison groups would lead to a definitive conclusion on the financial
benefits of DM. Many programs, however, had difficulty enrolling beneficiaries,
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and preliminary data indicated that the programs were unlikely to generate suffi-
cient savings to cover the program costs, leading Medicare to end the program
earlier than planned and resulting in continued controversy about whether this
constituted a good model of economic evaluation principles for DM pro-
grams [7].

This chapter outlines how PE principles, discussed in detail elsewhere in this
book, have been applied with respect to DM programs. The chapter will begin
with an introduction to DM and the characteristics of DM programs that make
it unique in the context of economic evaluation. Next, the chapter will examine
different approaches and applications of PE principles in the context of DM
programs. The final section of the chapter will discuss challenges inherent to
integrating these disciplines as the field moves from theory to practice.

16.1.2 DM PROGRAMS

DM programs have been in existence at least since the 1990s and have been
proposed as a way to address the failings of the traditional approach to clinical
medicine [3]. By providing a standardized, disease-focused approach to patient
care, it was envisioned that chronic disease could be managed better through
prevention so that acute episodes of illness (usually manifested as hospitaliza-
tions and emergency department visits) would be reduced or avoided altogether.
Furthermore, DM programs would facilitate knowledge and application of
standard of care medicine and improved coordination of care [3].

The term “disease management” has been used to describe a number of com-
ponent interventions, but the Disease Management Association of America
(DMAA) has established a definition that includes a core set of required com-
ponents [8]. In addition to the use of evidence-based clinical practice guidelines
as mentioned above, effective programs must identify the population at risk.
Typically, a clinic, health system or health plan uses administrative or clinical
databases to identify a target population with a specific disease based on diagno-
ses, procedures, medication use, lab results, or patient survey data. Commercial
DM vendors typically also use administrative data on costs and utilization to
target high-risk and high-cost populations who may benefit the most from
better management. DM programs also require patient involvement and patient
self-management education (to include primary prevention, behavior modifica-
tion programs, and compliance/surveillance) to equip participants to take
a more active role in managing their condition. Beyond the patient-program
dynamic, DM authorities generally recognize the need for a collaborative effort
among physicians, nurses, technicians, and other members of the care team in
order to effectively manage chronic conditions. There must be efforts made to
actively evaluate the programs using process and outcomes measurement, evalu-
ation, and management. Finally, there must be routine reporting and feedback
loops, including providing feedback to the patient and to the treatment team.

DM programs may be grouped into two general categories: integrated pro-
grams (those built into health plans or health systems) and non-integrated
programs (stand-alone commercial products) [9]. While many variations exist,
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the latter programs are designed, marketed, and implemented by third-party
vendors with no formal connection to a particular health plan, system, or
clinic. This has a significant impact on evaluation strategies, as who is pur-
chasing the DM services, whether patients are embedded within the practice,
and whether outreach, recruitment, and coordination costs are included or not
have important impacts on the economic costs being measured.

DM programs have been applied to a number of diseases, with diabetes, heart
failure, asthma, hypertension, cancer, and depression demonstrating encour-
aging outcomes data. Other diseases and conditions – for arthritis, pain man-
agement, HIV/AIDS, chronic obstructive pulmonary disease, lipid disorders,
and others – have been evaluated less frequently but show the potential for
benefits as well. With chronic illnesses accounting for nearly 75% of total
healthcare expenditures, the expansion of DM programs has accelerated in
recent years.

16.2 APPLICATION OF PE PRINCIPLES IN DM PROGRAMS

Despite their intuitive appeal and apparent simplicity, DM programs are
highly variable in design, complex in implementation, and have proven diffi-
cult to evaluate. PE, in the strictest sense, evaluates cost-effectiveness of
drug therapy in terms of the long-term costs and benefits to the patient, to
the payer, or to the system. PE principles can be applied to DM programs,
inasmuch as the DM program could be viewed like a pharmaceutical treat-
ment and the costs and economic impacts of the treatment can be calculated.
Unlike a medication, however, a DM program has multiple targets, including
the behavior of patients and multiple providers, each of which have multiple
different impacts on healthcare utilization, costs, and health outcomes. This
makes a typical PE approach to DM programs difficult. The following section
takes a look at different applications of PE principles to DM evaluation.

16.2.1 THE CENTRAL ROLE OF PHARMACEUTICALS

Many DM programs target the appropriate use of evidence-based drug ther-
apy as a way to improve outcomes and reduce costs related to disease exacer-
bations or progression. For example, heart failure and asthma DM programs
all include guidelines that specify the routine use of drugs such as angioten-
sin-converting enzyme (ACE) inhibitors for congestive heart failure (CHF)
or inhaled corticosteroids for asthma, since these have been shown to reduce
emergency room visits and hospitalizations. For depression and diabetes,
guidelines promote treatments that have been proven to improve symptoms
and prevent worsening of the disease and attendant hospitalizations. Effect-
ive DM programs assess whether patients are on appropriate therapy and
dose, whether they are taking medications as directed, and whether they are
responding as hoped.
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16.2.2 COST ANALYSES OF PHARMACEUTICAL INTERVENTIONS

The crudest justification for DM programs and for pharmaceutical interventions
is simple cost of illness (COI) studies (see Chapter 3 for more information on
COI). Although COI studies can be useful in identifying candidate conditions
with potential for reducing costs, they do not define alternative choices. Using
average costs in patients with a given diagnosis (as opposed to marginal costs
associated with having the diagnosis on top of other conditions) to assign direct
costs of an illness often leads to overestimation of burden attributable to the
disease in question and overestimation of the savings from better management
of that single condition. Such studies have relatively limited roles in evaluating
DM programs themselves, but articulating the burden of illness in financial
terms has often been effective in justifying the need for some intervention, espe-
cially among healthcare purchasers.

Cost-minimisation analysis (CMA) compares the costs of alternative inter-
ventions that are assumed to achieve the same target outcome (see Chapter 6
for more information on CMA). This analysis is most easily applied to phar-
maceuticals where there may be evidence that several alternatives are equivalent
in relieving symptoms or improving some physiologic endpoint, for example,
a specific improvement in blood pressure. A DM program designer or manager
may generate a list of all pharmaceuticals approved for use in a particular appli-
cation within a DM program and identify the least expensive, accounting for
direct, indirect, and intangible costs while considering time horizon and dis-
counting to present value (see Chapter 11 on discounting). An example would
be to analyze currently approved HMG CoA reductase inhibitors (commonly
referred to as statin drugs). While there are distinctions among these drugs in
terms of cost, dosing, and evidence on long-term outcomes, if one assumes that
there is no clear superiority among available statins (or among a selection of
statins) on important outcomes, a simple CMA comparing the various drugs
could identify cost-saving strategies for disease managers.

Cost-effectiveness analysis (CEA) calculates both the costs for a series of
equivalent treatment or preventive options and the effectiveness expressed as
change in a single common dimension of health outcomes, for example, cases
avoided, admissions avoided, life-years gained, deaths avoided, cases identified,
etc. (see Chapter 7 for more information on CEA). Researchers in the United
Kingdom have compared a group of statin medications with regard to the
cost to achieve a certain reduction in low-density lipoprotein cholesterol and
total cholesterol [10, 11]. In these studies, researchers were able to name
a specific drug as being the most cost-effective in the cohort examined. Such
information can be useful in choosing among different interventions that
may vary in effectiveness (e.g., in formulary decisions). CEA can also be
used to decide if a new intervention, such as a DM intervention, provides
reasonable “value” relative to other health programs, even if it is not strictly
cost-saving.

Cost–benefit analysis is distinct from the previous analytic methods described
as it strictly adheres to costs and benefits in monetary terms [12]. These tend to
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be comprehensive comparisons of all social costs and consequences, taking a
societal perspective to maximize social welfare; these are not routinely used in
the evaluation of DM programs as they require assigning monetary values to
all health outcomes.

Cost–utility analysis (CUA) compares alternative interventions using the
health outcome of individual “utility” based on preferences for different states
of well-being (see Chapter 7 for more information on CUA). As mentioned
previously, the quality-adjusted life year (QALY) is a common unit of measure-
ment in North American studies. Unlike CEA, CUA can account for a variety
of disparate outcomes, such as effects on symptoms, mortality, and unantici-
pated harms of treatment. Several challenges complicate the use of CUAs: util-
ities must be assigned to a comprehensive set of outcomes; a small change in
the disutility assigned to a common outcome (e.g., the inconvenience of moni-
toring one’s blood sugar regularly) can have big effects on overall assessments,
and finally, the results can be difficult for lay people to interpret. There is also
no consensus about what cost per QALY represents a “reasonable” value. That
is, there are generally no hard cut-offs for an acceptable cost to save one QALY.
A common cut-off in the U.S. has been $50,000, although these have been chan-
ging (see Chapter 15), but different thresholds may be used in the United King-
dom and other European countries [13]. A conference on evaluation of DM
sponsored by the Agency for Healthcare Research and Quality (AHRQ) in
2002 recommended the use of natural history models that combine the expected
benefits of improvement from multiple outcomes measures into a single com-
posite measure (the QALY), with the need for data validation and appropriate
case-mix adjustments [14].

16.2.3 ACTUARIAL ANALYSIS OF DM PROGRAMS

Actuarial approaches to DM evaluation are more common than health eco-
nomic approaches. Actuarial methods allow for analyses of DM programs
that have been applied to an entire target population and where there is no
concurrent comparison group. Actuarial analysis, instead, analyzes historical
trends and relies on a set of methodological tools and techniques applied to
financial risk and uncertainty. Actuarial analysis has a number of features:
a financial focus, an interest in long-term outcomes, prediction based on his-
torical experience, sensitivity testing on assumptions, the use of sophisticated
statistics, and a marriage of pragmatism and theory [15]. Predictive modeling
and assessments of DM interventions in terms of impacts on actuarial trend
lines have become the dominant evaluation model. In its simplest form, actu-
arial analysis measures cost trends before and after a DM intervention and
calculates the savings from the project cost trend line. The evaluation strategy
is straightforward and unbiased as long as the analysis is applied to all eligible
patients but assumes that models can adjust for other secular factors that may
affect cost trends. Trends (and estimated savings) can also be influenced by the
duration of baseline data.
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16.2.4 DEVELOPMENTS IN THE ECONOMIC EVALUATION OF DM PROGRAMS

Although actuarial analysis predominates with commercial programs, a number
of other reports have sought economic evaluations with more reliable concurrent
controls. The Medicare Prescription Drug, Improvement, and Modernization Act
of 2003 instituted a Chronic Care Improvement Plan for traditional fee-for-
service Medicare beneficiaries. This is a volunteer program to evaluate the use of
DM programs in the Medicare population. The name for this initiative was later
changed to the Medicare Health Support (MHS) program. Briefly, this program
called for DM vendors – selected vendors are henceforth referred to as Medicare
Health Support Organizations (MHSOs) – to target enrollees with the selected
conditions of heart failure and/or diabetes and to provide services incorporating
those already in use in commercial DM and case management programs. Thirty
thousand participants were identified and randomized into either the intervention
group (enrolled in an MHSO program) or the control group.

The first of four Reports to Congress was released in 2007 and presented
preliminary findings from the first six months of the trial [16]. There were no
significant differences between the intervention and the control groups in pro-
cesses of care, acute care utilization (outcomes), or changes in Hierarchical
Condition Code. Additionally, the authors of the first report did note as key
findings that the cost per beneficiary in the intervention and comparison
groups drifted apart between randomization and the start dates of the pilot;
the intervention group (those that volunteered to participate) tended to be
healthier and less expensive than the intervention group as a whole; and that
the programs have generally not been cost-effective for Medicare. While this
initial report did not offer promising information for supporters of DM pro-
grams, additional data are needed to draw firm conclusions. The 18-month
interim report on MHS again failed to identify financial cost-savings and con-
tinues to create controversy. The MHS experience illustrates a fundamental
challenge of non-integrated DM programs in effectively engaging the sickest
patients.

The RAND Corporation conducted a literature review on the available evi-
dence for the impacts of DM programs [6]. The authors reviewed three evalu-
ations of large population-based programs, ten meta-analyses, and sixteen
systematic reviews. In total, 317 unique studies were included in the review.
The report concluded that there is no evidence for improved cost-savings by
using DM programs despite improvements in processes of care and, in a very
limited number of circumstances, reduced utilization. The overarching theme
of the review was that scientific evidence had not kept pace with the growth
of the DM industry. The report also contained a useful perspective on how to
classify DM programs as the authors recommended analyzing a DM program
by both the severity of illness and by the intensity of the intervention. This
perspective may prove useful for future work using economic evaluation
applied to DM programs as programs can be grouped and compared more
easily if they are classified according to what they have in common.
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AHRQ’s report on Patient Self Management Support Programs also addressed
evaluation issues in DM [17]. As discussed above, DM programs depend on
patient education as a key component of their approach to managing disease.
Many of the observations here are applicable not only to patient self-
management efforts but also to DM programs as a whole in that both focus on
changes in behavior. These observations also provide opportunities for inclusion
of PE techniques into the development, implementation, and evaluation of DM
programs. The most specific example of how PE analysis may play a role in pro-
moting positive behavior change pertains to medication compliance. This in turn
belongs to a broader set of evaluation measures that help program managers
determine the success of their program as well as areas for improvement. The
authors emphasized the importance of aligning program objectives with meas-
ured objectives so that the results are meaningful. This is an area where PE
analysis may be particularly useful. For example, when planning what to meas-
ure, managers may desire to perform a CEA specifically related to medication
use within the DM program. Program managers working closely with PE
experts in the development process will ensure that their program is generating
appropriate data easily analyzed in future work, hence, opening the door for
meaningful program evaluation and improvement.

DMAA has also made significant contributions to developing practical
approaches to the economic evaluation of DM programs. Their Outcomes Guide-
line Report (Volumes I and II) outlined recommended practices for measuring
outcomes in DM and other population-based programs to include key clinical
measures, applications to wellness programs, and approaches to small popula-
tions. Volume III expanded on the clinical and financial measures from the
preceding volumes, validated an identification methodology, recommended
a measure of medication possession ratio (a metric of patient adherence to
medications), and outlined principles for evaluating programs for more than
one chronic medical condition [18].

16.2.5 EFFECTIVE USE OF PE DATA

DM programs depend on the selection of best medications, their use in a cor-
rect regimen, and patient and provider compliance. Patient compliance alone
may directly tie to the patient’s ability to pay for the medication, an important
area for PE if patient cost sharing is a factor. There are recent examples of
direct application of PE data to disease processes that are also managed under
DM programs. All of the examples below demonstrate the role that PE can
play in guiding DM programs, potentially at more than one stage of the pro-
gram life cycle.

For example, clopidogrel is an antiplatelet agent used to treat a variety of
vascular diseases, including the U. S. Food and Drug Administration -approved
indications of acute coronary syndrome, stroke, and peripheral artery disease,
all within specified time frames with respect to hospitalization or diagnosis.
A study by Choudhry found that as much as 40% of a 5,000-person Medicare
population was prescribed the drug despite it having no clear advantage over
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alternate or no therapy [19]. Many of the patients in this cohort would have
been equally well treated by using aspirin. In this particular example, there is
abundant literature on use of clopidogrel to include good scientific under-
standing of which specific patients benefit from its use versus aspirin alone.
This information is important from an economic perspective as there is a
great difference in price between clopidogrel and aspirin, with clopidogrel cost-
ing as much as several hundred times that of aspirin per tablet [20]. Choudhry
estimated that potentially inappropriate use of clopidogrel cost the state of
Pennsylvania as much as $2.87 million in one year (using FDA indications for
clopidogrel use). It is then reasonable to suppose that were PE data such as
these applied to DM programs, real and substantial cost-savings could be
achieved in a short time. Operationally, it would not be difficult to assign DM
program participants into categories based on the clinical indicators for particu-
lar treatments, as risk stratification is already a part of some DM programs.

Seen from a different angle, the ability of a DM program to support medi-
cation compliance may be significantly enhanced by provision of payment for
medications where there is strong evidence for their use in treating specific
conditions. Choudhry also examined how providing full coverage for drugs
enhanced compliance with treatment regimens for post-myocardial infarction
patients [21]. He found that among Medicare beneficiaries, eliminating patient
responsibility for paying for essential drugs such as aspirin, beta-blockers,
ACE inhibitors or angiotensin receptor blockers, and statins, there was an
improvement in cost-utility of $7,182 per QALY saved despite the program
not being strictly cost-saving. Choudhry made the macroeconomic argument
that, from a societal perspective, this is beneficial. An application to DM pro-
grams might be offering enrollees full or partial drug coverage for those medi-
cations included within the DM program requirements.

In addition to these two examples of PE analysis playing an important
role in DM programs, there has been work in gathering similar data from
the treatment of illnesses less commonly thought of in the context of a DM
program. In 2005, Dubinsky examined the cost-effectiveness of various
strategies for treating Crohn’s disease, including a comparison of traditional
methods with those more tailored to individual patients based on individual
variance in metabolism of the main therapeutic drug. She concluded that
costs were significantly greater for non-tailored care and that time to reach
a response to treatment was longer [22]. Treatment of Alzheimer’s disease
with a new drug was the topic of a PE review by Lamb [23] who showed
that a specific acetylcholinesterase inhibitor, rivastigmine, was associated with
cost-savings (not including the cost of the drug itself), which became more signifi-
cant over time and when initiated early in the progression of the disease. Both of
these examples demonstrate situations where cost-effectiveness of a pharmaceut-
ical intervention will be greatest if the drug is prescribed in a controlled environ-
ment, such as within a DM program, where patients and their use of particular
medications are closely monitored and where changes in therapeutic regimens are
potentially simpler to institute, monitor, and modify.
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16.3 FROM THEORY TO PRACTICE

The application of PE theory into DM evaluation practice is beset by a number
of challenges. Interventions and the components of DM programs that one
strives to evaluate take place within complex health systems, and our PE tech-
niques tend to be rather crude, with fundamental biases when applied to DM
programs.

16.3.1 EVALUATION STRATEGIES

The purpose of any evaluation is to demonstrate value in terms of cost-
savings, clinical improvements, or increased quality of care. Effective evalu-
ations allow one to improve how the program is designed or delivered and
help to sustain support for the program within the limitations of time, data,
and resources. Good evaluation strategies aim to accurately reflect the impact
of programs, avoid measures that conceal or mislead, and use resources for
efficient measurement. Hence, the selection of measures and evaluation strat-
egies must balance process and outcomes measures, consider the feasibility of
data collection, and the importance of the measure in promoting actual
improvements in the program.

Measuring the financial or economic impact of DM programs requires one
to recognize the inherent challenges (e.g., allowing a sufficient time horizon
for improvements, the turnover of subjects within the program, defining the
population and the denominator). One must have realistic expectations about
how much evaluation can be achieved in a given DM program and the value
of longer, more contentious, and more expensive evaluations. Estimates of
costs must be sure to include the costs of the DM program itself and the costs
of increased medical care and pharmaceutical interventions. Accurate estima-
tions of cost-savings require a reliable comparison group, and certain compari-
sons are likely to be biased. For example, pre–post comparisons in high-cost
patients are subject to regression to the mean. Likewise, unadjusted compari-
sons between patients who remain in a given DM program and those who do
not are subject to selection bias.

Practical evaluation strategies call for the development of a standardized
methodology, but this is beset by a number of conflicting dichotomies. Simpli-
city in practice comes at the price of accuracy and practicality is at odds with
evaluation granularity. The search for comparability makes it difficult to
achieve customizability.

16.3.2 PERSISTENT CHALLENGES

Data availability varies considerably from DM program to DM program, and
evaluations are often limited to administrative claims data. Beyond actuarial
models that focus on financial risk, it is difficult to access data that relate to
the broad definitions of economic value. For example, patient quality of life,
worker productivity, and patient satisfaction are important, but these data are
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often unavailable. Case-mix adjustments are required, and one needs to iden-
tify all vendor fees and administrative costs associated with a given DM inter-
vention, but data to support these evaluations are also not always available.

The perspectives of different payers (e.g., Medicare, Medicaid, employers,
health plans, etc.) may differ substantially and may have conflicting objectives:
who captures the savings and when have important implications. Patients and
clinicians often view impacts over an entire lifetime, while purchasers and
health plans may prefer shorter time horizons that relate to turnover rates. Also,
given that significant cost shifting (delays in cost burden) may occur across time,
different purchasers are concerned with different analytical approaches that cap-
ture this perspective.

Measurement challenges are common and well established in DM evalu-
ation. Regression to the mean resulting from the targeted evaluation of high-
risk or enrolled subpopulations only and selection bias resulting from selective
enrollment or turnover remain critical challenges. Pre/post study designs with-
out a control group are most practical, although evaluations with whole popu-
lations or probability sampling with case-mix adjustment and a comparison
group would likely be more valid. Secular trends, technology changes, medical
inflation, differential program ages, local pricing or accounting differences,
enrollee turnover, treatment interference, and other factors may be significant
confounders.

The generalizability of results from economic evaluations remains limited.
It is difficult to attribute conclusions and results from specific interventions given
that diseases, populations, and settings vary considerably. Multiple comorbidities
add complexity, although most chronic diseases have significant comorbidities
that must be managed concurrently. In addition, different diseases may have vary-
ing timelines for long-term economic returns.

16.4 CONCLUSIONS

The economic evaluation of DM programs depends largely on the structure of
the DM programs and the objective of the evaluation. DM programs target mul-
tiple levels – patient behaviors, provider behaviors, and health system change –
and each level must be appropriately incentivized. Patient self-management
practices only work on those willing to be engaged. Moreover, incentives to
change provider behavior depend on the model or embedded system of care
within which providers operate. Systems integration and measurement depend
on whether DM programs are stand-alone or integrated, and all DM interven-
tions take place in complex health systems.

The practical application of PE principles often relies on over-idealistic
assumptions about DM. It is important to recognize that economic evalu-
ations are not simple and that they are not inexpensive. The analytic strat-
egies that one chooses must recognize the fundamental limitations of
traditional PE approaches and the need to select appropriate approaches and
models in evaluating DM. Actuarial analysis and predictive modeling are
likely to remain the dominant analytical strategy, both for their reliance on
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relatively easily accessible data and their relative simplicity, but one must also
recognize that the challenge of evaluating practice change at multiple levels
within complex healthcare systems requires the use of different analytical
tools and approaches as needed.
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17.1 INTRODUCTION

The area of artificial intelligence is gathering increasing visibility, with self-
driving cars and voice assistants coming to the market. In the pharmaceutical
industry, we have seen pockets of use for computers and machine learning for
aspects of drug discovery for several decades [1]. At its core, machine learning
is just “using patterns in data to label things” [2]. Recent developments in
deep learning exemplified by deep neural networks (DNNs) that have become
more accessible [3–6] have accelerated the interest such that this has become
a hot trend in the industry [7–10]. These technologies can assist us in mining
complex data, learning from images, and perhaps in identifying future import-
ant drugs. Beyond the hype, the reality always sets in [11]; what we are seeing
are discrete pockets where this technology excels. Otherwise, algorithms devel-
oped decades ago are still holding their own in the many recent comparisons
for drug discovery applications [12–14], with DNN occasionally outperforming
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the other methods marginally for drug discovery applications [15]. We can
learn from the decades of use and development of computational and machine
learning models in the pharmaceutical industry and apply them elsewhere in
areas like pharmacoeconomics, for example.

As stated in the American College of Physicians position paper,

given the as-yet uncontrolled explosion of health care costs. . . and the limited
resources of our society, the time has come for patients, physicians, insurers, and
health care policymakers to explicitly and transparently factor the comparative
effectiveness, comparative cost, and cost-effectiveness of both new and existing
health care interventions into their decisions. [1]

Attempts to provide that computational evidence have sometimes been disas-
trous. For example, a computational (decision analysis) model that was used to
compare the expected health outcomes and resource requirements for mammog-
raphy screening caused a furor by calling for limited screening below the age of
50 and increasing the screening interval to every other year for all but high-risk
breast cancer candidates [16]. The model interpretation was debated in journal
articles, published and further debated in online newspaper stories, blogs, and
various other scattered information sources without a centrally located source
not only for making the model available for examination but also for discussion
surrounding the model once published. It was rumored that insurance companies
would stop paying for annual mammograms. As mentioned in the online Health
Care Blog, “What a golden opportunity has been missed to educate Americans
about the implications of their health care choices” [17]. Fortunately, practitioner
societies, such as the American Society of Clinical Oncology and the American
Heart Association in conjunction with the American College of Cardiology, inde-
pendent associations, such as the Institute for Clinical and Economic Review
(ICER), academicians, managed care organizations and other healthcare institu-
tions, have all recently established or proposed the so-called “value frameworks”
(see Chapter 15) that encompass measures of cost (affordability) and/or cost-
effectiveness of drugs and other initiatives [18–20].

The International Society for Pharmacoeconomics and Outcomes Research
(ISPOR), Health Technology Assessment International (HTAi), Academy for Man-
aged Care Pharmacy (AMCP), and Society for Medical Decision Making
(SMDM) have called for transparency and availability of models so that they can
be examined and vetted (e.g., by journal reviewers and policy makers), “reused”
with different data, further validated, and continually revised as new information
becomes available [21–24]. The difficulty with these requirements is illustrated by
the following:

1. Models are often created for a single purpose and then languish in
journal archives, health authority databases, or various proprietary
settings, often reinvented when the need arises for a new evaluation
to inform health policy decisions or drug reimbursement guidelines;
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2. Rather than using/updating a pre-existing model, new models are
often created for new medications or new indications at considerable
time (up to a year) [25] and expense;

3. Because of lack of a platform and standards for easily sharing such
computer-based models, very few are ever made available to peer
reviewers, let alone expert readers, public health officials, and decision
makers other than in the form of a paper print-out of the model or
certain of its generated reports; and,

4. Currently, the medical specialty journals remain the primary medium
for communicating the content and results of decision models to the
healthcare research community.

There are an increasing number of online tools that are viable for storing science-
related content, e.g. FigShare (Digital Science), SlideShare (Microsoft), Mendeley
(Elsevier), Dropbox, etc. and consortia to coordinate and make data accessible
like OpenPhacts [26, 27], ATOM [28], as well as a myriad of other initiatives to
free up data [29–31]. In addition, there are several efforts that have enabled the
sharing of machine learning models for drug discovery [32–34].

We envisage a future in which there is a massive growth in open science
and we see the urgent need for a model exchange (ModEx). This represents a
knowledgebase for real-time management of data and models fully supporting
the FAIR (Findable, Accessible, Interoperable, Reusable) principle for research
data [35] and updates an earlier idea we published in 2010 that many groups
[22, 23, 25, 27, 36] are now embracing, namely, to build a web-based platform
for the exchange and enhancement of healthcare models that determine com-
parative effectiveness (CE) and/or cost-effectiveness of different healthcare
strategies (Figure 17.1). Bertagnolli and colleagues [37] have discussed data
sharing of clinical trial results—a feat more than 60 years in coming—and
hampered largely by similar forces to those facing the sharing of pharmacoe-
conomic models, namely, lack of “access to enabling data systems technology,
bioinformatics expertise and legal agreements that facilitate sharing.” Some of
these barriers to data sharing of clinical trial results are slowly being overcome
via gatekeeper models (a central repository overseen by an independent expert
committee and subject to review of a research proposal), active open source data-
sharing models (upload and download of publicly-available patient-level datasets,
incorporating templates of legal agreements and other documentation to facilitate
data-sharing), and federated data models (the data requester’s analytical pro-
grams are copied into the data owner’s computer, the programs are run and the
aggregated results are sent back to the requester) [37]. We have published the con-
cept in a peer-reviewed journal [25, 36] and have been contacted by researchers
from around the globe who are eager to participate. A secondary effect of
ModEx will be to have a positive global impact on the pace, usage, scholarship,
cost, and relevance of computational model development for pharmaceutical/
device company customers (Pharma), policy makers, and the researchers who
generate these models. We will build on our recent work to develop software for
sharing machine learning models including Assay Central [13, 14, 38], which
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provides a considerable foundation for ModEx and will improve data sharing
and collaboration.

The following sections illustrate some of the algorithms and approaches
that have been applied successfully in drug discovery. In addition, we will
describe some applications of software in pharmacoeconomics and ultimately
suggest how we could use such approaches to create a decision-making algo-
rithm for pharmaceutical research and development.

17.2 QUANTITATIVE STRUCTURE–ACTIVITY RELATIONSHIPS

Quantitative Structure–Activity Relationships (QSARs) are mathematical models
relating a molecular structure to a chemical property or biological effect using
statistical techniques. When a significant correlation is achieved for a set of train-
ing molecules with available biological data, the model can then be used to pre-
dict the biological effect for other molecules, although there may be some
limitations to model applicability [39]. QSAR is a key component of modern
medicinal chemistry and pharmacology, with much of the early work in the field
published by Hansch and co-workers in the 1960s onwards [40]; since this time,
there have been thousands of models generated [41, 42]. QSAR uses a wide array
of molecular descriptors (one dimensional, two dimensional, and three dimen-
sional [3D]) as numerical representations of chemical structures [43, 44] and
methods to select those that are most relevant [45]. 3D-QSAR methods, including
comparative molecular field analysis [46] and comparative molecular similarity
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FIGURE 17.1 Creation of an interactive model exchange/marketplace prototype. The
figure represents the web processes transactional system components. ModEx will store
all data in a database backend and provide an administrative interface for users. It will
be comprised of several major subsystems and a number of connected services.
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indices analysis [47], are perhaps the most widely used. Of course, the real value
of these QSAR methods is in using them to make predictions for new molecules
or as frequently used in the process of scoring and ranking molecules in large
chemical libraries for their likelihood of possessing affinity for a target of interest
(also known as virtual screening) [38]. The pharmaceutical industry has learnt to
accept that virtual screening methods represent an efficient complement to high
throughput screening [48–50]. Virtual screening requires either a ligand-based
model of the protein of interest, a QSAR or pharmacophore, or the target itself
(target-based virtual screening) [51, 52].

A diverse range of ligand-based virtual screening methods is available [53]
(for more details, see recent reviews [39, 54]). Perhaps the most widely
employed methods requiring 3D structure representations of molecules are
those exploiting the concept of pharmacophore similarity [55], where
a pharmacophore is the 3D arrangement of molecular features necessary for
bioactivity [56–60]. Pharmacophore approaches have subsequently been
applied to many therapeutic targets for the virtual screening of compound
databases [61–63]. Successful pharmacophore applications include the identifi-
cation of hits for a variety of targets [64, 65], such as absorption, distribution,
metabolism, excretion, and toxicity (ADME/Tox)-related proteins, using data-
base searching protocols [66–69]. Hence, pharmacophore-based approaches
have considerable versatility and applicability.

17.3 MACHINE LEARNING METHODS

Machine learning approaches have been widely used for several decades for
ADME/Tox and drug discovery, and they have enabled the prioritization of
compounds prior to testing in vitro (Figure 17.2). The large volumes of avail-
able in vitro data have motivated the field to initially focus on computational
models to predict properties such as aqueous solubility and metabolic stability.
Some of the machine learning models, e.g. solubility, human liver microsomes,
or mouse liver microsomes [70, 71], have proven relatively useful. Drug discov-
ery is about making better decisions. Every day, drug discovery teams in large
Pharma must decide which hits to take forward from a high throughput
screen, which compounds to synthesize, which compounds to take into
a pharmacokinetic study, and ultimately, which compounds to take into devel-
opment and subsequently the clinic.

Collaborations Pharmaceuticals Inc. has been involved in making available
as open source software various machine learning technologies, such as algo-
rithms and descriptors [72–74], which have recently eliminated the barrier of
expensive proprietary software for cheminformatics [75]. One product we are
developing is Assay Central (Figure 17.3), a cheminformatics tool for building
and validating machine learning models for high throughput and other datasets
in drug discovery [12, 76, 77]. The Assay Central project has been previously
described [12, 76, 77]. It uses the source code management system Git to gather
and store structure–activity datasets from diverse sources in addition to storing
scripts for thorough curation. These scripts employ a series of rules for the

From Machine Learning to Pharmacoeconomics 283



detection of problem data that are corrected by a combination of automated
structure standardization (including removing salts, neutralizing unbalanced
charges, and merging duplicate structures with finite activities) and human re-
curation. The output is a high-quality dataset and a Bayesian model that can be
conveniently used to predict activities for proposed compounds. We utilize Assay
Central to prepare and merge datasets collated in Molecular Notebook [76], as
well as generate Bayesian models of training data. These models utilize extended
connectivity fingerprints maximum diameter 6 (ECFP6) descriptors [78, 79],
which are circular topological fingerprints generated by applying the Morgan
algorithm that have widely been noted for their ability to map structure–activity
relationships [77]. Each model in Assay Central includes common statistics to
evaluate predictive performance. Assay Central allows us to wrap up models as
an app and share them with collaborators (model 17.1). This achieves one of our
goals to make the models accessible to collaborators and they can be shared pri-
vately or publicly (e.g., as supplemental data for publications).

We have also compared various machine learning models across multiple
drug discovery and toxicity end points [12]. We use the RDKit open source
cheminformatics software [78] to generate Extended-Connectivity Fingerprints
(ECFP6) [79] for the training set compounds that serve as the chemical features
for QSAR modeling training. Then, a variety of machine learning algorithms are
used to learn the relationship between the chemical features and the target activ-
ity within the training compounds. These include “classic” machine learning
algorithms Bernoulli Naive Bayes [80], AdaBoost Decision Trees [81], Random
Forest (RF) [82], Support Vector Classification [83], and k-Nearest Neighbors
[84] as implemented through the software package scikit-learn (http://scikit-learn.

FIGURE 17.2 Machine learning process schematic.
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FIGURE 17.3 Assay Central interface and inset showing test set molecule (black) sur-
rounded by training set actives (green) and inactives (no shading).
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org/) [85]. Additionally, DNN [86] using multiple hidden layers and implemented
using Keras [87] is included in our comparisons. We frequently use a stratified
five-fold cross validation technique that maintains similar ratios of active and
inactive molecules amongst the splits. This five-fold cross validation is performed
exhaustively for each combination of hyper-parameters to identify the best set as
measured by the area under the receiver operating characteristic curve. However,
due to the increased training times needed for DNN, the five-fold cross validation
is performed on a single set of hyper-parameters that we previously found to per-
form well on a variety of diverse datasets [12].

What is a success for us as modelers may not be seen that way by other
scientists/investors, etc. How we pick the endpoint to demonstrate that machine
learning works is therefore critical. In order to succeed, the pharmaceutical indus-
try and pharmaceutical researchers must promote internal collaboration and the
sharing of data that can be mined efficiently rather than generating silos of
impenetrable information. Drug discovery and development has been suggested to
be composed of distinct decision gates [88, 89], where key questions can be asked
of a candidate molecule and answers may be provided using experimental studies.
One could imagine that these decision gates could represent individual computa-
tional models which ultimately lead to the development of decision analytic
methods, which will be useful to determine whether a molecule should progress
through additional steps of the drug discovery and development process. The deci-
sions suggested in such an approach could be based on one of a number of algo-
rithms such as a decision tree approach that has been used widely in health
economic analysis [90] and drug innovation assessment algorithm analysis [91],
and that incorporates probability models and weights at each step. This may repre-
sent an opportunity for the industry to consider predictions from many computa-
tional simulations in different areas of research alongside experimental data.

17.4 SHARING PHARMACOECONOMIC MODELS

Healthcare rationing, that is, deciding who gets what healthcare service, is
influenced in the United States and, indeed, around the world, by computer
models that compare available treatments, so-called CE models, to see which
works and costs the least based on research findings. The US Institute of
Medicine defines CE research as the study of methods to “prevent, diagnose,
treat, and monitor a clinical condition or to improve the delivery of care,”
including alternative approaches to healthcare delivery, to assist “consumers,
clinicians, purchasers, and policy makers to make informed decisions that will
improve health care at both the individual and the population levels.” Compu-
terized models help to objectify the complexities of CE and cost-effectiveness
of different therapeutic options to aid in decision-making by pharmaceutical/
device manufacturers, health authorities, and healthcare practitioners regard-
ing therapeutic guidelines, reimbursement/coverage, and overall patient health.
Many of these models are created annually. However, these models are often
static versions published in journals, not transparent, open to public scrutiny,
or updated in a timely fashion.
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We believe that the time has come to embrace development of the registry
of CE models which we proposed 10 years ago and that the technology available
to do this is even more robust now. This effort will include classic machine learn-
ing methods such as Bayesian, RF, and SVM, as well as cutting edge machine
learning methods such as DNNs, which have been used to advance many other
fields [8]. Algorithms could also highlight potential problems with the model(s),
and similar methods would provide the quality check, followed up by an Advis-
ory Panel evaluating the model for basic validity according to AdViSHE recom-
mendations, including validation of the conceptual model, input data,
computerized model calculations, and accurate model outcomes [92]. Sharing
of CE models goes far beyond the company-level collaboration [93]. It is long
overdue for a consortium to be formed which might consist of the major stake-
holders such as societies (e.g., ISPOR, HTAi, SMDM, and AMCP), academic
centers of excellence (e.g., University of York, Tufts Medical Center), health
technology assessment bodies (e.g., National Institute for Health and Care
Excellence, ICER, Canadian Agency for Drugs and Technologies in Health),
and the pharmaceutical industry, who could break down their CE model silos
and cooperate for the good of patients. The proposed ModEx offers a platform
for the sharing of models, allows for a network of model creators/potential to
meet, and has a much broader base of user types. It is also a central forum for
discussion and peer-review around the models and their implications. The pro-
ject is also intended to bring together open and pre-publication data and
models, facilitating research around this data. By connecting focused groups of
disparate individuals and organizations scattered about the country or globe,
the ample opportunity exists to both gather and disseminate important infor-
mation to a highly relevant target audience. Team members will be able to
borrow and reuse a growing collection of existing data and/or models.

A large number of such models are created and published annually. Indeed,
a Medline search for “cost-effectiveness analysis” (one of the model types that
will be supported in ModEx [Figure 17.1]) yielded 22,681 abstracts over the
past 5 years. Therefore, there are many researchers in the field creating and
publishing their models in journals. These models are expensive to create.

Although gaining traction in the health economic press lately, as noted
above, the concept of an exchange for CE and cost-effectiveness models is
innovative, has never been accomplished for this purpose, and will have a positive
impact in the modeling community, and, ultimately, in healthcare research.
Although there is a precedent for collaborative modeling, the Global Diabetes
Model [94–96], ModEx, will catalyze a level of collaboration and peer-to-peer
networking that does not currently normally occur in the modeling community—
amongst modelers, potential “customers” for the models, public health officials,
and members of the public. Indeed, the germ for this idea was the request of one
of the others by two very different entities—an academic institution and a large,
public, CRO—that she donate a working copy of a decision tree model that she
had previously published so that they could further modify it for their needs [90].
ModEx will assist model developers not only by increasing their visibility but
also by increasing the return on their development efforts by selling the models to
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multiple customers or through contracts to customize their models for other
applications. Model development and validation would likely become more rapid
and cost-effective because many models have common bases, and a modeler
could build on that base rather than starting from scratch. In some cases, simply
using a different data set (e.g., a managed care vs. Medicaid database) for a new
client would result in novel conclusions. Furthermore, collaborations between
modeling experts from industry, academia, and government may result in more
and better ideas. ModEx will be a centralized marketplace for the exchange of
pre-existing models, new models, and collaboration amongst various stakeholders
in the CE debate. The ModEx platform aims to serve modelers in the CE, deci-
sion analysis, and health economics communities, which are currently without
a platform for sharing models. These users will have secure accounts from which
they can share models they desire (when published, for example) or keep them
private by default if they are only using ModEx for collaboration amongst
a small group. In addition, the ModEx platform would include a search as well
as networking component, enabling users to post queries and collaborate with
colleagues and others working on modeling projects. Ensuring authenticity and
integrity of models and data generated is possible by implementing a DataLedger
[97, 98], which represents an open source framework based on the approach and
technology used in Blockchain [99] and Hyperledger [100].

17.5 CONCLUSION

Computational tools and algorithms can have an impact when used alongside
other types of data in drug discovery and development [1]. In recent years, we
have seen more data sharing by big Pharma and considerable efforts at open
innovation [31, 101–106]. The machine learning tools and models are, how-
ever, usually used in isolation to make discrete decisions and rarely shared.
Part of this may derive from commercial tools limiting the sharing of models
to those with licenses for the software used. Open source software has
changed the dynamic in cheminformatics to some degree [72, 74, 107–113].
We propose that pharmacoeconomics could also benefit from the sharing of
models, and enabling this will require the development of a new database and
software tools. Challenges ahead include the funding of such initiatives and
the willingness of the community to both contribute and share their models
while using those developed by others. While we describe just 2 discrete areas
of drug discovery that utilize computational approaches, one could imagine
many more that could learn from these initiatives.
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18.1 HOW BADLY DID WE DO?

Before launching into further speculations on the future, it is worth revisiting
those that we made a decade ago for the first edition of this book. At that time,
we worried about pharmacoeconomics sinking into irrelevance, weighted down by
burdensome theory that led to methods that were not aligned with the concerns of
decision makers and failed to provide substantive, defensible guidance. We were
concerned that the preoccupation with QALYs and their use in cost-per-QALY
comparisons with evidence-free thresholds would prompt many stakeholders to
jettison our field and look for alternatives that better addressed their needs. We,
rather optimistically, called for the field to move beyond the QALYand incremen-
tal cost-effectiveness ratios to embrace more relevant, fit-for-purpose approaches
and offered some thoughts on alternatives that were already available.

Well, the QALY is still with us, but calls for its replacement, or at least extensive
modification, have grown more strident. Recognition that it is not a good measure
of therapeutic benefits, nor a solid basis for their valuation, is now widespread but
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the field clings stubbornly to the QALY, alleging a variation of the old saw, “but it’s
the best we have”. Now, the claim is that we have invested so much effort on this
measure and there are such extensive data on its use that we cannot possibly
abandon it at this juncture. Instead, it is said that it can be modified—with little
clarity on how—to address the main concerns. I very much doubt it can be
saved because the flaws are so fundamental, and the required modifications so
profound that any resulting new version, if it is to be truly useful, would no
longer be a QALY. Indeed, there are already various proposed new approaches
that forego the QALY and related “incremental cost-effectiveness analysis”
entirely; more on this below.

Another prediction we made was that decision-analytic models would be
forced to become increasingly sophisticated to better accord with reality and
provide a solid basis for considering the complex issues that attend to appraisal
of new interventions. Although the basic, oversimplified cohort Markov
approach continues to be the most prevalent, it has lost its monopoly. Our field
has finally recognized that better methods are needed to realistically model the
course of chronic diseases over time; the many therapeutic alternatives and
sequences; increasing knowledge of the determinants—particularly biomarkers;
and newer mechanisms of action. Most well-regarded models today are individ-
ual patient simulations that can properly reflect the required intricacy. Indeed,
novel methods, such as discretely integrated condition event (DICE) simulation
discussed in Chapter 10, have made significant inroads, and I expect that in the
near future we will consign the cohort Markov approach to the very limited
role it deserves (finally!).

Along with our prediction that modeling would need to grow in sophistication
was our sense that we would need to vastly improve the validation of the models
that underpin appraisals of new technologies. We worried that impossibly short
timelines, a penchant for one-time use models, and software restrictions that led
to very obscure implementations would further erode any trust that decision
makers might have in the results of model-based analyses. There has been some
progress in this regard. Although predictive validation—the most persuasive kind
—remains rare, most model reports now include some sort of validation and
methods to facilitate it and improve transparency have become more prevalent.
Similarly, there are increasing examples of models designed for repeated use over
many years, increasing the impetus for validation. In parallel, we are seeing calls
for models to join the open source movement, allowing many eyes to view the
structure, inputs, calculations, and results, thus helping ensure that errors are
caught earlier, and the models continually improve. Some national HTA agencies
have even started pursuing construction of their own core models aimed at stand-
ardizing simulation in those therapeutic areas and reducing structural uncer-
tainty, or at least rendering it plainly visible.

Apart from speculations on the maturation of the field methodologically,
we also ventured the idea that clinical trials would become market oriented
rather than remaining focused on producing the highly artificial “efficacy”
estimates necessary to get past the regulatory hurdles. This has decidedly not
happened. Despite some innovation in designs and use of wearables to collect
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data, development of new medicines remains entrenched in the traditional
three phases, with the randomized clinical trial the gold standard. Neverthe-
less, there are some signs of recognition that the needs of the markets require
loosening the strictures and leveraging novel methods, particularly those that
can validly extract useful information from the very large datasets that are
now becoming ubiquitous. Further thoughts on this are discussed below.

18.2 RENEWED SPECULATIONS

Mindful of our much less than perfect record so far, I will nevertheless venture
thoughts on some of the most active areas in our field, and their implications
for further developments.

18.2.1 CONCERNS WITH COST, AFFORDABILITY AND PURSUIT OF VALUE

Although pharmacoeconomics is by no means concerned solely, or even pri-
marily, with therapeutic costs, this is by far the aspect that causes the most
ado and draws in clinicians, patients, politicians, the press and others who
would not otherwise show much interest. This is not a new phenomenon—in
many ways it was the stimulus that gave origin to our field—but the prolifer-
ation of highly effective therapies for previously incurable diseases at very high
prices has propelled concerns with costs and questions of value to the forefront.

One consequence of these heightened concerns is the rise of the so-called
value-frameworks in the United States. The idea behind these frameworks is
seductive: fully assess the value of a new intervention in order to appraise
whether it is sufficient to justify the proposed price. The items incorporated on
each list and the manner of assessing them differs but the focus is on ensuring
the catalog is comprehensive. Unfortunately, this misses the core methodological
challenge: what is the reasonable amount to pay for a given set of benefits?
Answering this vital question remains elusive because assigning monetary value
to health and other less tangible effects is very problematic without actively
trading them in a market.

The prevailing approach supported by many economists is the idea of
opportunity cost: if for the amount to be paid, you are obtaining more benefit
elsewhere, then the price is too high. While this appears to be sensible, it turns
out to be extremely difficult to apply in practice. Determining how much bene-
fit is obtained for a given healthcare expenditure requires data that are rarely
available; benefits are not always evident, particularly if one insists on using
the QALY; and the few studies that have attempted it, have found enormous
variability across therapeutic areas. Thus, the threshold price to pay remains
an arbitrary choice in all jurisdictions. This is unlikely to be remedied any
time soon.

In part to avoid these issues, many countries (e.g., France, Germany, Japan)
had refused to pursue this avenue, preferring instead to embark on negoti-
ations without theoretical foundations. The much greater pressures generated
by enormous therapeutic advances coupled with vastly higher prices are
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forcing everyone to wade into these treacherous waters. It is unclear where
this will lead. Though fraught with difficulties, one option is to modify the
opportunity cost yardstick from one based on estimates of what we pay to
one that considers explicitly what we would give up in order to fund the new
intervention. This is already being done at the hospital level in some countries
and would clarify for everyone the trade-offs required if implemented more
broadly. Of course, it is one thing to talk about what one might give up and
another thing altogether to actually disinvest in those activities. So far, there
has been very little progress in this regard and people are very reluctant to
withdraw established funding. Nevertheless, it seems inevitable that formal
processes will be established to assess existing expenditures (possibly extending
beyond the healthcare system) for reassignment.

Another option is to directly intervene, without a theoretical basis, to limit
the prices paid. Even those who do not accede to the threshold-based
approach must recognize that it does provide an effective club with which to
beat back high prices. More draconian tools will become increasingly attract-
ive if better solutions are not found—and industry does itself no favors by
raising prices, with little justification, after products achieve market access.

The concern with costs will not abate in the near future. Instead, pressure
will mount to make novel interventions available at more affordable prices,
and this will motivate many new actors to take a stab at new ways to measure
benefits and establish their value.

18.2.2 THE RISE OF MECHANISM OF ACTION PRODUCTS

ACROSS INDICATIONS

As we learn more about the underlying abnormalities that lead to disease, it is
becoming clear that many conditions that were considered distinct illnesses
are simply different manifestations of the same problem. This has led to devel-
opment of interventions that attack a particular underlying defect that may
result in various diseases. These mechanism of action (MoA) products are,
therefore, not limited to one indication—they may be of benefit in several con-
ditions, with the specific clinical effects differing.

The applicability of a single product to many conditions poses a new set of
challenges for our field. A big one has to do with what price should be set.
Given the differences across indications in manifestations; management prac-
tices; alternative treatments; prognosis; the clinical effects of the treatment; and
other major components of the pharmacoeconomic assessment, it is unclear
which ones should drive pricing considerations and how any given price
should be assessed. A seemingly obvious solution may be to set a different
price in each indication, but it is not evident why the same product should
not have the same cost regardless of the indication. Moreover, there are many
practical challenges to implementing differential pricing. For manufacturers,
there are many immediate concerns, including which indication to prioritize
and how to position their asset. MoA products will become increasingly
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common, and this will force our field to grapple with these issues. Perhaps
economic models will expand to consider the broader range of indications,
and the specific indications will be deemphasized. This may even lead to
modifying the specialties that clinicians pursue, focusing on a MoA rather
than an organ or physiological system.

18.2.3 THE IMPACT OF “PERSONALIZED” MEDICINE

Along with deeper understanding of the mechanisms of disease, there is increas-
ingly detailed elucidation of the factors that determine prognosis and the
response to treatment. This enables developers of interventions to tailor them
more specifically to individuals and opens the door for highly personalized
approaches to treating disease. While it is hard to view these advances nega-
tively, they do confront us with important new problems.

To recoup the large investments in research and development, firms must
be able to generate substantial revenues with those products that are successful
in reaching market. As treatments become more individualized, the potential
volume of users necessarily drops, shrinking the market substantially. This
leaves pricing as the only way to achieve the desired revenue, with the result-
ing numbers reaching stratospheric heights that further challenge efforts to
balance costs and benefits. Bespoke products in any area are always much
more expensive than mass-market ones, but these are typically considered lux-
uries, and the decision to spend money on them is left to the wealthy con-
sumer. This is not (at least not yet) an option for medicines with much higher,
potentially curative, efficacy coupled with fewer side-effects. Dealing with the
inexorable progress in precision medicine will require substantial innovations
across pharmacoeconomics, insurance, health technology appraisal, funding
mechanisms, legal, regulatory, and other areas. There is little time for these to
take place, yet efforts remain disparate, poorly funded, and tentative.

18.2.4 NEW APPROACHES TO VALUATION

The conflicting demands resulting from the promising scientific advances and
funding imperatives are, fortunately, breaking the hold of the entrenched cost-
per-QALY dogma and fostering interest in alternatives. One major area has to
do with the failure of the QALY to capture many of the effects of interven-
tions. Some researchers have tried to retain the familiar measure by somehow
broadening it to encompass other aspects of value. This has not yet produced
a usable, widely accepted variant. It is doubtful that these efforts will result in
a better QALY because they fail to address its fundamental problems.

A more radical approach is to abandon the QALY altogether and lever-
age other methodologies. One that has stirred much interest is multi-criteria
decision analysis (MCDA), see Chapter 9. In an MCDA, any number of criteria
can be considered, and the appraisal can weight their importance in whatever
way is judged appropriate. Thus, there is no inherent limitation to what the ana-
lysis covers, and the theoretical failings of the QALYare avoided. Still, important
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and difficult challenges remain. MCDA was not intended for recurrent decisions
across many and diverse areas. If criteria and weights are standardized and fixed,
the method will lose its flexibility, but without that, it is unclear how it can be
validly applied to our problems. The scores produced, even with standardized
criteria and weights, have no inherent meaning and their value in monetary
terms is not established. Whether costs should be incorporated in the MCDA
or be kept separate is a matter of controversy. Of course, MCDA is subject to
the more general problem of getting humans to coherently value consequences
in the abstract.

Another alternative that departs from the QALY is to desist from forcing
its two dimensions into a single index. The originators of the QALY and other
researchers at the time felt strongly that a single measure would ease difficult
decision-making, but much of the QALY’s weaknesses stem from that choice.
If the dimensions are kept distinct, then the effects of disease and of interven-
tions on mortality can be appraised separately from those on quality of life,
even if dependencies remain (e.g., hair loss is relatively inconsequential with a
life-saving treatment but would scarcely be tolerated to alleviate minor pain).
Recently, this idea has been advanced further by proposing a two-dimensional
measure of value that considers the deadliness of the illness and its non-fatal
impact relative to the inexorable consequences of senescence. This measure—
the “BADI”—properly assigns the (0, 0) point to absence of disease and pro-
vides unbounded scales to assess whatever condition affects health adversely.
The effect of an intervention can then be represented as a decrease in deadli-
ness, or in non-fatal impact, or both, and its value can be gauged conditional
on the severity of the illness. Whether this new measure, which can provide
for more valid assessment, is adopted and leads to more acceptable decisions
remains to be seen.

18.2.5 LEVERAGING VAST DATA SETS

It is evident that vast quantities of information on individuals’ characteristics,
behaviors, clinical status, and even their genomes are being rapidly assembled
and linked to other enormous datasets. The challenge medicine faces is turning
this massive information into knowledge that can enhance assessments, support
better decisions, and, ultimately, improve outcomes. For better or worse, this chal-
lenge has attracted the attention of the large corporations whose business is, to
a great extent, in dealing with huge datasets and who have, thus, acquired sub-
stantial expertise in wringing the most value from their collections. For now,
their target seems to be largely clinical medicine and related research, but it
won’t be long before they sniff out the possibilities in pharmacoeconomics.
Hopefully, our field can successfully surf that tsunami, but there is substantial
risk that our methods will be swept away into irrelevance or just not imple-
mented appropriately.

The methods applied by those corporations, variously grouped under
“machine learning” and “artificial intelligence,” are being applied in efforts to
discern patterns that would otherwise have gone unnoticed and there have
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been some successes. Their application to pharmacoeconomics remains a work
in progress, however. We are unsure how to incorporate the stochastic outputs
of those analyses into our economic models, and the distrust of “black boxes”
will only grow as we try to make use of these much less transparent frameworks.
Major efforts to render them comprehensible will be essential if they are to be
considered by health technology assessment agencies in their appraisals.

One area where knowledge gained from large datasets can be readily lever-
aged is the identification of subgroups where an intervention is more efficient.
This efficiency can be gained simply by reserving the intervention for individ-
uals who manifest characteristics that have been identified as markers of
higher mortality or, worse, non-fatal impacts. Pursuing these risk factors is
not new, and our field has done well applying equations derived with standard
statistical methods, but harnessing vast datasets with the newer approaches
offers the tantalizing possibility of taking this to a much more refined level.

It is much more difficult, however, to move beyond identifying patterns of
risk factors to understanding causal relationships that make it possible to predict
the impact of altering the individual’s conditions, behaviors, or environment.
Nevertheless, such models would allow much better forecasting of effects and this
enhanced precision could take us from the rather sketchy and difficult to validate
estimates made today in highly artificial simulated contexts to actual predictions
of what will happen to actual patients in the conditions of the real world.
Whether we ultimately want to head into that messy sphere may not be entirely
in our control—it will be extremely difficult to stop that “progress.”

One very fertile ground for machine learning is improvement of the ran-
domized clinical trial (RCT). Today, we still have to enroll large numbers of
participants because the majority of them will not manifest the outcomes of
interest, thus making it much harder to detect any signal. If knowledge derived
via machine learning can improve admissibility criteria so that we target the
experiment to those who are very likely to experience the outcomes, the trials
will become much more efficient. These better targeted criteria will also reduce
heterogeneity, ultimately perhaps approaching the levels attained in the lab,
where cloned organisms can be ethically studied.

Though still very much a pipe dream, these developments in machine-
learning-derived knowledge, coupled with genomics and much more precise
understanding of the mechanisms of disease and the actions of interventions,
may one day lead to fully in silico trials that can accurately predict the
expected effects in precisely defined types of patients. This would, of course,
simultaneously achieve a major goal of “personalized” medicine.

18.2.6 WILL HTA AND REGULATORY APPROVAL COME TOGETHER?

In today’s world, the process of evaluating the evidence regarding a product’s
intended and united effects remains distinct from that of assessing the eco-
nomic implications of these effects; this separateness is underscored in all juris-
dictions by assigning these responsibilities to different agencies. This has led to
the increasingly common, yet very awkward, situation where the evidence that
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a product is beneficial is judged sufficient for it to be given market authorization,
but market access is withheld or restricted because its price is not appraised as
efficient enough. This is particularly uncomfortable when there is unanimity on
the former across jurisdictions, yet the citizens of some countries are allowed to
benefit while those of others are forbidden. This might be viewed as reasonable
when the countries’ economies are vastly different, but it is much more difficult to
justify when they are quite similar.

One hope has been to minimize this by harmonizing processes, even to the
extent of bringing them into one agency or closely related entities. This would also
achieve substantial efficiencies by reducing repetition of tasks with similar object-
ives. After all, the underlying evidence is the same, even if the manner of process-
ing it may differ. Initiatives in this regard are ongoing, but, so far, there has been
little tangible progress. Getting from the lab to the patient still requires a product
to pass through a complex set of distinct hurdles that do not necessarily cohere.

One of the justifications given for this inefficiency and incoherence is the
differences in actual practices, costs, and preferences across borders. Undoubt-
edly, these exist, but their impact can be handled by improving the way we
approach the evidence and the appraisal of value. The regulatory process must
leave behind the hypothesis-testing focus and move towards detailed quantifi-
cation of a product’s effects over time, conditional on patient characteristics,
and against relevant comparators. This should include consideration of all
relevant data, not just from the development-phase trials, and bring to bear
techniques such as meta-analysis, simulated treatment comparisons, and quan-
titative benefit-risk modeling. The goal should be as full a quantitative under-
standing of the product’s intended and unintended effects as possible, relative
to those of its therapeutic alternatives. The regulatory decision, presumably,
would rest on whether these effects are judged to be sufficiently beneficial.

The assessment of the economic implications can then take the detailed
estimates of effects and incorporate them directly into the appropriate model.
Indeed, if properly coordinated, this model would simply be an extension of
the one used to support the regulatory decision. It should not be difficult to
add to this model those aspects that pertain to value, ensuring that they are
readily adaptable locally as needed. This adaptability is already a feature of
many of the economic models constructed today. If a common model is used,
ideally open source and endorsed by the agency, we will greatly improve the
efficiency of the process and the consistency of the estimates, though the deci-
sions themselves may still turn out differently because of local considerations
not incorporated in the model.

18.3 CONCLUSIONS

Despite its on-the-go development, borrowed methodologies, and seat-of-the-
pants experts, pharmacoeconomics is still here—indeed, it is thriving. Our con-
gresses now number participants in the thousands; many formal educational
graduate-level programs have been established and there is no shortage of eager
students; and mainstream media increasingly take notice. Perhaps the most
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conspicuous sign of relevance is the formal involvement of clinicians and their
professional societies together with the increasing attention paid by patient
groups. Even politicians in countries without a national healthcare system have
realized that pharmacoeconomics offers tools to address the costs increasingly
perceived to be unsustainable.

We now have the opportunity to play a major role in the shaping of health
care, the development of new products, and the leveraging of novel methods and
tools. Achieving these enticing aspirations will require a new generation of lead-
ers willing to take the field into unexplored areas, to break with the dogma we
have depended on and focus on doing the very best we can to ensure that our
efforts properly support the difficult decisions looming in the near future.
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As mentioned previously throughout this book, it is important to assess the
trade-offs between the economic costs of a strategy and the benefit derived
from that strategy to determine comparative cost-effectiveness of competing
approaches. Multiple journal editorials and letters to the editor have refer-
enced the many SARS-CoV-2 (novel coronavirus or COVID-19) forecasting
models (see Table 19.1), sometimes with wildly diverging predictions [1]. The
problem is that the code and inputs are unavailable to understand how these
results were derived. Some have weighed in that

it would be much simpler to require publicly funded academics to publish data and code
as a matter of course; the possibility of competing teams checking their work might
encourage development of the quality-control culture that seems lacking within the acad-
emy. It would also mean that in a crisis, when traditional academic peer review would
move too slowly to be useful, a crowdsourced review process could take place. [1]

The use of open source models (OSMs), those for which all data and programming
associated with the model are made openly available to enhance transparency and,
perhaps, facilitate replication and ongoing modifications of the model, have the
potential to allow for faster access to critical knowledge [2–5]. Use of OSMs, per-
haps in an easily accessible database, could allow for the aforementioned “crowd-
sourced” model review and more accurate/timely models, at least as far as the
existing data allow. Although there have been relatively few articles published on
the cost-effectiveness of methods, for example, partial or full quarantine/isolation,
masking, screening, and testing, of dealing with the novel coronavirus to date
because of the newness of the situation, inclusion of cost-effectiveness in these epi-
demiological models would “help to inform decisions about the most efficient,
comprehensive and feasible strategies” [6] to employ in any pandemic situation.

Cost-utility analysis (CUA), as discussed in Chapter 1 and other chapters
about modeling, is a subtype of cost-effectiveness analysis (CEA) wherein the
effectiveness component of the equation is “adjusted” by the impact of a
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TABLE 19.1

Sample of COVID-19 Forecast and Projection Models

Model and Organization(s)
Responsible

Primary
Approach

Outcomes Estimated and
Timeframe

Selected Model Findings/
Notes

Imperial College
“Non-Pharmaceutical
Intervention” (NP) Model

SEIR Projected US cases,
deaths across a range of
different mitigation and
suppression scenarios,
over the next year (to
April 2021)

Projected 2.2 million US
deaths might occur in an
“unmitigated” scenario

Institute for Health Metrics
and Evaluation (IHME)
COVID-19 Model

Curve-fitting
/extrapolation

Forecasts number of
hospitalizations and
deaths in the United
States and by state, along
with the timing of in the
peak of hospitalizations
and deaths, through
August 2020

Initially, the model
forecast 81,000 deaths in
the United States by July.
Results are updated daily,
and as of April 12, 2020,
that death estimate has
been revised downward,
to 61,545 by August 4,
2020.

COVID-19 Model from
Northeastern University.
Fogarty International
Center, Fred Hutchison
Cancer Center, University
of Florida and others

Agent-based Projects cases and deaths
in the United States and
by state, under no
mitigation vs.
“stay-at-home” scenario,
through April 30, 2020

As of April 4, 2020, the
model projected US
deaths would peak on
April 8, 2020, and there
would be approximately
52,575 COVID-19 deaths
(range: 35,381 to 88,269)
by April 30, 2020.

Columbia University Severe
COVID-19 Risk Model (&
Mapping Tool)

SEIR Provides projections on
number of severe cases,
hospitalizations, critical
care, ICU uses, and
deaths under different
social distancing
scenarios, for 3-week and
6-week periods starting
April 2, 2020

In different regions of the
United States anywhere
from 33,986 and 185,192
deaths could be averted
through social distancing.

Los Alamos National
Laboratory Confirmed and
Forecasted Case Data
Model

Curve-fitting
/extrapolation

Forecasts cases and
deaths by US state using
assumptions about the
growth rate in cases and
deaths and the presence
of social distancing
interventions through
May 20, 2020

As an example, the model
best guess forecast for
California as of April 8,
2020, is that there would
be 138,100 cases and
4,082 deaths.

(Continued )
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therapeutic pathway on a patient’s quality of life. As discussed in Chapter 12,
a common metric used in CUA is the quality-adjusted life year (QALY), which
considers the modification of mortality (years of life saved) by the quality impact
on those life-years. CUAs are typically reported as incremental cost-effectiveness
ratios (ICERs), calculated as (Cost1 – Cost2)/(QALYs1 – QALYs2); see Chapters
1, 4, and 7. One of the major advantages of using cost per QALY is that it is
a metric that can be examined in League tables (see Chapter 1) in comparison to
other analyses that use cost per QALYas their primary outcomes metric. It is for
this reason that many health technology authorities require CUA to use cost per
QALY as the major indicator of the ICER threshold or value framework (see
Chapters 13, 14, and 15).

In an attempt to quantify cost-effectiveness of pandemic strategies, in gen-
eral, a blog on the Tufts Medical Center (Center for the Evaluation of Value
and Risk in Health [CEVR]) website reported on the frequency with which
the cost-effectiveness of disease outbreak control and/or prevention strategies
had been published in peer-reviewed literature as entered into the Tufts-CEVR
CEA Registry (https://cevr.tuftsmedicalcenter.org/databases/cea-registry) [6].
Out of the more than 8,000 cost per QALY studies with >20,000 ICERs, the
researchers found only 38 published articles (0.5%) that met the desired cri-
teria. Of the 143 intervention-specific ICERs reported, approximately 70%
evaluated vaccine or pharmaceutical strategies, with the remainder focused on
screening/testing and other strategies. The ICERs ranged from US$440 /
QALY (intravenous antiviral agents to treat hospitalized patients with influ-
enza-like (H1N1) illness) to US$15,000,000/QALY (universal meningococcal
serotype B vaccination), with a median of US$49,000/QALY, which would be con-
sidered quite cost-effective in major nations around the globe (see Chapter 15).

TABLE 19.1 (Cont.)

Model and Organization(s)
Responsible

Primary
Approach

Outcomes Estimated and
Timeframe

Selected Model Findings/
Notes

University of Pennsylvania
COVID-19 Hospital Impact
Model for Epidemics
(CHIME)

SIR Model allows users to set
inputs and assumptions
and then provides
forecasts on the expected
number of hospitaliza-
tions, ICU bed demand,
ventilator demand, and
number of days these
demands would exceed
capacity at hospitals in
a given area based on
those inputs, over the next
three months.

Using inputs for
three University of
Pennsylvania Health
System hospitals, the
model projected best- and
worst-case scenarios for
total hospital bed
capacity needed would
reach 3,131–12,650,
including 338–1,608 ICU
beds and 118 to 599
ventilators.
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Thirty-seven interventions (e.g., one-dose varicella vaccination) were considered
cost-saving (see Chapters 1 and 7).

Three primary modeling methods of epidemiologic forecasting and projections
for COVID-19 include Susceptible, Exposed, Infectious, Removed/Recovered
(SEIR)/Susceptible, Infectious, Recovered (SIR) models; agent-based models;
and curve-fitting/extrapolation models; examples of some of the most often-
discussed models are shown in Table 19.1 [7].

One of the few available cost-effectiveness articles on COVID-19 strategies,
in a medRxiv preprint (non-peer-reviewed as of this book’s printing), exam-
ined the comparative cost-effectiveness of global versus focused isolation of
people at high risk of exposure with extensive polymerase chain reaction
(PCR) testing in Israel during the SARS-CoV-2 pandemic over a 200-day time
frame [8]. They used a modified SEIR, six-compartment simulation model
(Susceptible, Exposed, Exposed asymptomatic, Infected, Recovered, Death) to
compare the two strategies in controlling the spread of COVID-19 and evalu-
ated two outcomes: cost per one avoided death and cost per QALY. Results of
the base case analysis are seen in Table 19.2.1

A sensitivity analysis demonstrated that the virus transmission rate and
daily mortality rate were the two most influential variables. The authors sug-
gested that to “transform” their cost per avoided death to cost per QALY, one
could equate loss of one life to loss of 10 QALYs (a rather unusual method),
suggesting a cost per QALY of $74,690,035/10 = $7,469,004 per QALY, a very
cost-ineffective number.

A preliminary CEA (CUA) of remdesivir, an agent that has shown promise
in reducing the length of hospitalization for patients with advanced COVID-19
illness and lung involvement, used a short-term decision tree with a long-term
Markov model (see Chapter 4), the health system perspective and a lifetime
time horizon to calculate a reasonable price for remdesivir [9]. The Institute for
Clinical and Economic Review took the unusual approach of framing the ana-
lysis as a “cost recovery” evaluation, that is, framing it as one that compensates
the manufacturer for the costs of production without additional profit. Costs
and outcomes (cost per QALY) were discounted at a rate of 3%. Value-based

TABLE 19.2

Comparative Cost-effectiveness of Global versus Focused
Isolation of High-Risk Populations

Deaths Cost (USD) ICER (Cost/death avoided)

Global isolation 322 10,694,000,000 $74,690,035

Focused isolation 464 88,015,000

1 N.B. that the manuscript reports a rounded ICERof $75,110,000 per death avoided.
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prices were calculated assuming a mortality benefit with remdesivir, although
evidence from the Adaptive COVID-19 Treatment Trial did not demonstrate
a statistically significant benefit for the drug. As a result, a scenario (sensitivity)
analysis assuming no mortality benefit was also conducted (see Table 19.3).

Therefore, assuming the minimum threshold of $50,000/QALY, remdesivir
should be priced no higher than $4,460 if the mortality benefit holds or $390
for a 5- or 10-day course if there is no mortality benefit.

While both of these are unpublished studies and subject to change based on
peer review, the goal of performing CEAs to determine appropriate allocation of
healthcare resources and, ultimately, providing a practical tool for decision-makers
faced with making reimbursement decisions across widely different healthcare tech-
nologies and strategies is laudable and necessary. Future analyses will surely be
conducted for this and other drugs/vaccines for the novel coronavirus.

Interestingly, the first edition of this book focused on a public-private partner-
ship to develop comparative CEAs that would help in allocation of resources and
determine global pricing and availability of a vaccine to bring another deadly virus
under control—human papillomavirus (HPV) —which in 2018 caused approxi-
mately 570,000 cases of cervical cancer (the fourth most common cancer in
women) and 311,000 deaths from the disease [10]. Even with the licensing of the
HPV vaccine in over 100 countries since 2006, this disease remains deadly, more so
in low-income countries [11]. This second edition of our book now coincides with
the arrival of a global virus, SARS-CoV-2, that is the deadliest in a century, with
similar requirements for public-private partnerships. Indeed, in this time of con-
strained resources and need to determine the most cost-effective strategies to
address the horrendous loss of life, socioeconomic disparity, mental anguish, and
inadequate planning that have been associated with the novel coronavirus, pharma-
coeconomic analyses are an objective way to determine likely budget impact of
various strategies and how to most efficiently invest in future healthcare.
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