
Odesa National Medical University Department of Pharmacology and Pharmacognosy PHARMACOLOGY OF ANTIBIOTIC PREPARATIONS. SULFANILAMIDE PREPARATIONS AND OTHER SYNTHETIC PREPARATIONS. BASIC PRINCIPLES OF CHEMOTHERAPY

CLASSIFICATION OF CHEMOTHERAPEUTIC DRUGS

- Antibiotics
- Sulfonamides
- Different chemical structure derivatives of:
- naphthiridin. Quinolones (nalidixic acid, etc.).
 Fluoroquinolones (ciprofloxacin, etc.)
- imidazole (metronidazol, tinidazol)
- 8-oxyquinòline (chlorquinaldol, nitroxoline, etc.)
- nitrofurane (furasolidone, furadonine and etc.)
- quinoxaline (dioxidin, quinoxidin)
- By special indications:
- antituberculosis
- antisyphilytic
- antiprotozoal
- antimycotic
- antihélmintic
- antiviral
- antitumoural

- Rational choice of a drug (depending on the sensitivity of disease agent, concomitant diseases, anamnesis, etc.)
- Early beginning of treatment

- Way of introduction (depending on localization, severity of a pathological process, concomitant diseases)
- Choice of a dose for creation of therapeutic concentration (depending on weight, age, sex, concomitant pathology, etc.)
- Interval of introduction (depending on the pharmacokinetic properties of preparation)
- **Duration of treatment** ("train" principle continuation of treatment up to clinical and bacteriological recovery)
- Combined treatment
- Rise of immunological reactivity of an organism (probiotics, vitaminic drugs, immunomodulators)

ANTIBIOTICS –

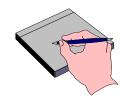
The substances of mainly biological origin (biosynthetic), their half-synthetic and synthetic analogs, causing damaging or destroying effect on the microorganisms which are sensitive to them

according to origin:

- Mould fungi penicillins, cephalosporins, etc.
- Radiant fungi streptomycin, levomicetin (chloramphnicol),tetracycline
- Bacteria gramicidin
- Synthetic analogs and derivatives of natural antibiotics

CLASSIFICATION OF ANTIBIOTICS ACCORDING TO ANTIMICROBIAL SPECTRUM

> With the main influence on Gr+ microbes


- **Beta-lactam antibiotics** (penicillins, cephalosporins & others beta-lactam agents)
- Macrolides & azalides
- Antibiotics with special indications

> With the main influence on Gr- microbes

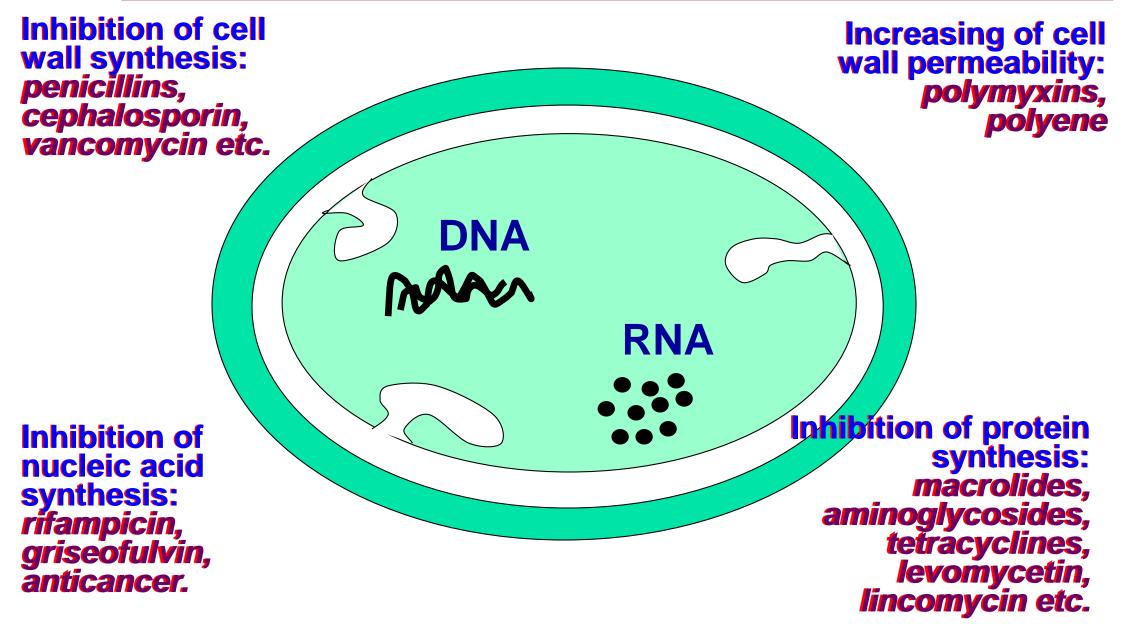
- Aminoglycosides
- Polymyxins

Influencing both on Gr+ & Gr- microbes

- Tetracyclines
- Levomycetin
- Influencing both on Gr+ & Gr- microbes and used locally: Polymyxins, Neomycin, Monomycin
- Antifungal
- Anticancer

CLASSIFICATION OF ANTIBIOTICS

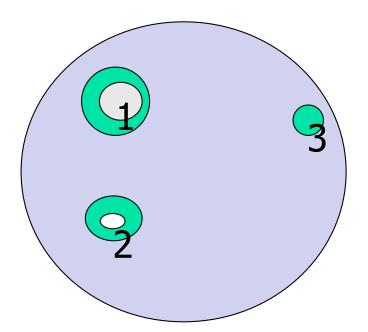
By chemical structure :


- Beta-lactam beta-lactam ring (penicillins, cephalosporins, carbepenemes, monobactams)
- Macrolides lactonic ring (erythromycin) and azalides (azithromycin)
- ✤ *Tetracyclines* 4 rings (tetracycline, doxycycline, etc.)
- Aminoglycosides containing aminosugars (streptomycin, gentamicin)
- Lincosamides (lincomycin, etc.)
- Derivatives of dioxyaminophenilpropan (levomycetin)
- Polymixins cyclic polypeptids (polymixin B)
- Polyenes (amphotericin B, nystatin, etc.) and others

according to action:

- Predominantly bactericidic action penicillins, cephalosporins, aminoglycosides
- Predominantly bacteriostatic action tetracyclines, levomycetin, macrolides

CLASSIFICATION OF ANTIBIOTICS ACCORDING TO MECHANISM OF ACTION



Rational choice of antibiotic (depending on disease causative agent sensitivity, concomitant diseases, allergologic, medicinal anamnesis, etc.)

disk-diffuse method

A zone of microorganism growth depression around the disk with antibiotic (1 - the)microorganisms are resistant to antibiotic or 2 — the microorganisms are moderately resistant to antibiotic)

There is no zone of microorganism growth depression around the disk with antibiotic (3 microorganisms are resistant to antibiotic)

Rational choice of antibiotic

Category of sensitivity	Clinical characteristics
Sensitive	Therapy is successful in usual doses
with intermediate	Therapy is successful with resistance maximal doses or localization of infection in antibiotic accumulated tissues
Resistant	Maximal doses are ineffective

- Early onset of treatment
- Way of introduction (depending on localization and severity of process, concomitant diseases)
- Choice of dose for creation of therapeutic concentration (depending on the body weight, age, concomitant diseases)
- Interval of introduction (depending on pharmacokinetic parameters)

• **Duration of treatment:**

In accordance with recommendations of the World Health Organization (WHO), 1 drug for no more than 5–7 days long; the "train" principle **Postantibiotic effect (PAE)** — depression of vital function of microorganisms, proceeding after stopping a contact with antibiotic (minutes, hours)

Combined treatment:

Makes sense with mixed infection, threat to life more frequent — bactericidal with bactericidal, bacteriostatic with bacteriostatic

• Rise of immunological reactivity of an organism (probiotics, vitaminic drugs, immunomodulators)

ADVERSE EFFECTS OF ANTIBIOTIC THERAPY

Development of polyresistance in microorganisms (biological, specific, secondary, persistent, cross)

Development of allergic reactions (immediate type)

- betalactam, etc.; delayed type)

Direct organotoxic effects (neuro-, hepato-, myelo-,

nephrotoxicity, gastrointestinal disturbances, etc.)

Development of exacerbation reaction (endotoxic)

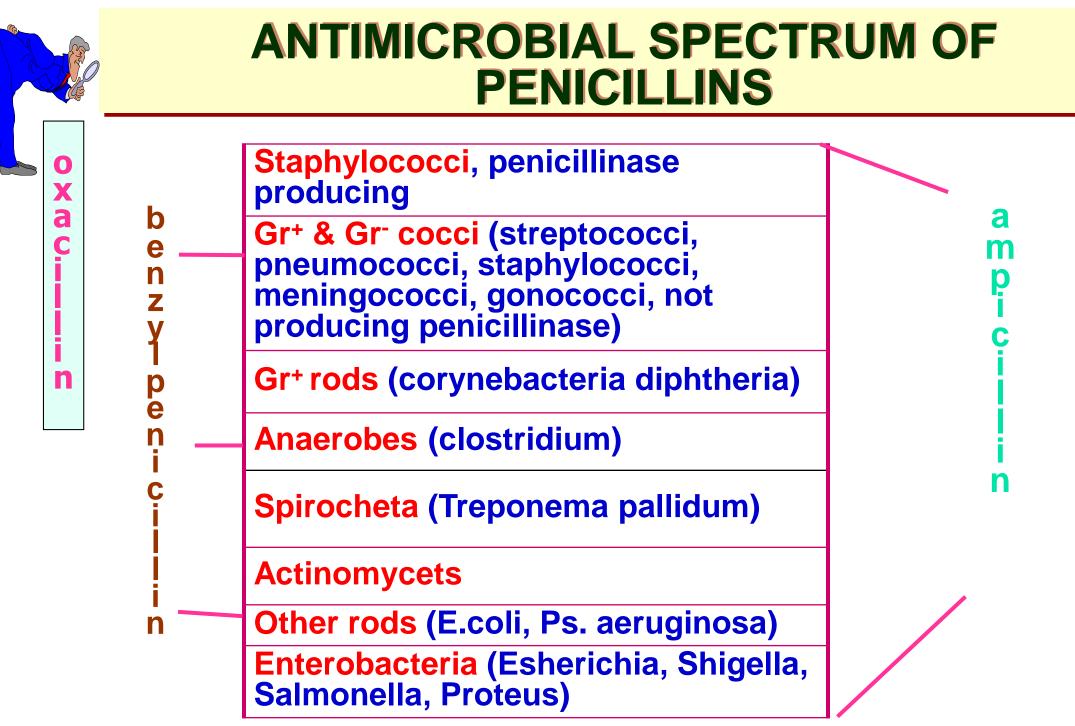
Development of superinfection (candidomycosis)

staphylococcosis, hypovitaminosis)

Mutagenic, teratogenic, embryo- and fetotoxic action

GENERAL DEMANDS AND CRITERIA OF ANTIBIOTICS DISTINCTION

- Resistance to microorganisms, mutated during the process of antibacterial drugs application
- Range of antibacterial action spectrum
- The minimal toxicity for macroorganism
- Prolongation of action
- Acid stability
- If necessary penetration through the blood brain barrier


КЛАССИФИКАЦИЯ ПЕНИЦИЛЛИНОВ

- Biosynthetic: short action benzylpenicillin sodium and potassium salts, phenoxymethylpenicillin; depopreparations — benzathine benzylpenicillin (extencillin), bicillin-1), bicillin-5
- Semi-synthetic:
- izoxazolilpenicillins oxacillin, cloxacillin, flucloxacillin
- aminopenicillins ampicillin, amoxicillin
- antipyocyanic carboxypenicillins (carbenicillin, ticarcillin) and ureidopenicillins (azlocillin, piperacillin)

combined and inhibitor-protected — ampiox, helicocide (amoxicillin + metronidazol), amoxiclav (amoxicillin + clavulanate), ampicillin + sulbactam, ticarcillin+ clavulanate, piperacillin + tazobactam, etc.

PHARMACOKINETICS OF PENICILLINS

- Absorption: parenterally and per oral (on an empty stomach orin an hour after the meal!); bioavailability 30–50%
- Binding with proteins: different (biosynthetic about 80%,oxacillin — 90%, ampicillin — 20%)
- Distribution: high concentration in the liver, lungs, kidneys, reproductive organs, lower in tissues of the eyes, prostate gland, CNS, penetrate well to the mucous membranes, badly to the bone tissue
- Time of therapeutic concentration (ThC) is different: benzypenicillin — 3–4 hrs, depo preparations up to 2–4 weeks, semi-synthetic — 6–8 hrs
- Biotransformation: in the liver practically does not metabolize, except for oxacillin, etc.
- Excretion: excrete mainly by the kidneys, and also by the liver, saliva, breast milk

CHEMOTHERAPEUTIC SPECTRUM OF PENICILLINS

- Benzyl penicillin sodium & potassium salts respiratory system infection, rheumatic fever, syphilis, endocarditis, meningitis, anthrax, gas gangrene, infection of female reproductive organs;
- Bicillin-5 rheumatic fever, syphilis, scarlet fever;
- Oxacillin sodium respiratory system infection, gas gangrene, purulent infection of skin and soft tissues;
- Ampicillin respiratory system infection, endocarditis, bacterial meningitis, gas gangrene, intestinal infection;
- Carbenicillin endocarditis, bacterial meningitis, infection of skin, joints and soft tissues, urinary tract infection, prostatitis

ADVERSE EFFECTS OF PENICILLINS

- Allergic reactions (immediate! & delayed type). Cross-hypersensitivity with cephalosporins!
- Endotoxic reaction (reaction of aggravation) – benzyl penicillin at syphilis
- Superinfection
- Neurotoxicity
- Gastrointestinal upset (ampicillin, oxacillin)

CLASSIFICATION OF CEPHALOSPORINS

> first-generation:

- for parenteral administration cephaloridine, cefazolin, cephalothin;
- for oral intake cephalexin;

Second-generation :

- for parenteral administration- cefuroxime, cefoxitin, cefamandole;
- for oral intake-cefaclor; third generation :
- for parenteral administration- cefotaxime, ceftriaxone, cefoperazone;
- for oral intake-cefixime;
- fourth generation (parenteral administration only): cefepime, cefpirome

ANTIMICROBIAL SPECTRUM OF CEPHALOSPORINS

- First-generation Gr⁺ rods & cocci (N. gonorrhoeae, E.coli, Kl. pneumoniae, and Proteus mirabilis).
- Second-generation see first-generation plus extended Gr- coverage, e.g., Proteus vulgaris, Enterobacter, Haemophilus influenzae.
- Third-generation less active against grampositive cocci, active against Serratia, Enterobacter as well as β-lactamase-producing strains of Haemophilus and Neisseria.
- Fourth-generation similar to third-generation agents, but it is more resistant to hydrolysis by chromosomal beta-lactamases (e.g., those produced by Enterobacter).

CEPHALOSPORINS

- Infection of respiratory system
- Infection of urinary tract,
- Infection of skin, bone and soft tissues;
- Infection of reproductive system (i.e., gonorrhea);
- Postoperation infection;
- >Endocarditis;
- ENT-pathology;
- ➢ Peritonitis.

ADVERSE EFFECTS OF CEPHALOSPORINS

- Allergic reactions (including crosshypersensitivity with penicillins);
- Superinfection;
- Dyspepsia;
- Phlebitis;
- Hepatotoxicity;
- Leucopenia, agranulocytosis;
- Neurotoxicity.

MONOBACTAMS (Aztreonam)

- Spectrum activity Gr- rods (including Pseudomonas, Klebsiella, Serratia, and Proteus mirabilis), Gr+ rods, anaerobes.
- Uses bacterial pneumonia, skin and soft tissue infections, urinary tract infections, gynecologic and intra-abdominal infections, septicemia;
- Adverse effects allergic reactions, phlebitis, dyspepsia, diarrhea etc

CARBAPENEMS (Tienam, Meropenem)

- Spectrum activity Gr- rods (Pseudomonas, Enterobacter, Serratia), gram-positive organisms, and anaerobes .
- Uses the treatment of intra-abdominal infections, skin and soft tissue infections caused by susceptible organisms;
- Adverse effects nausea, vomiting, diarrhea, skin rashes, and reactions at the infusion sites.

MACROLIDES & AZALIDES

	Erythromycin	Azithromycin
Anti- microbial spectrum activity	Cocci Gr+ & Gr-, spirocheta, Rickettsia sp., corynebacteria, Chlamidia, Mycoplasma, Legionella, Helicobacter species.	Slightly less active against staphylo- & streptococci and slightly more active against H.influenzae & Chlamydia.
Pharmaco kinetics	Badly absorbed in GIT; don't cross BBB; T _{1/2} - 2-5 hrs	Badly absorbed in GIT; don't cross BBB; $T_{1/2}$ (tissue) – 2-5 hrs; store in tissues
Adverse effects	Hepatotoxicity, allergic reactions, superinfection	Nausea, vomiting, diarrhea

AMINOGLYCOSIDES

Streptomycin, Kanamycin, Gentamicin, Amikacin, Sisomicin, Tobramycin.

Spectru m	Streptomycin	Gentamicin
Antimicr obial	Majority of Gr- rods like, E.coli, Kl. pneumonia, Shigella dysentery, brucella, Francisella tularensis, Yersinia pestis, M.tuberculosis.	Gr+ & Gr- bacteria; Proteus, E.coli, Salmonella.
Chemoth erapeutic	Tuberulosis, endocarditis, peritonitis, urinary tract and GI-tract infections, brucella, tularemia, plague	Pneumonia, pleuritis, empiema, peritonitis, meningitis, sepsis, urinary tract infection, prostatitis.

ADVERSE EFFECTS OF AMINOGLYCOSIDES

- Ototoxicity;
- Allergic reactions;
- Superinfection;
- Nephrotoxicity;
- Neuroxicity;
- Curare-like effect;
- Fetotoxic and embryotoxic effect.

POLYMIXINS B and E

Mechanism of action — bactericidal; disturb permeability of cellular wall and transport mechanisms, binding with the bacteria's cell membrane

Antimicrobial spectrum — Gr– microflora

Pharmacokinetics — do not absorb into the GIT, with parenteral introduction badly penetrate the tissues, do not get to alive cells; excretion by kidneys

Adverse effects — high nephro- and neurotoxicity (parestesia, dizziness, discoordination of movements), respiratory paralysis, etc.

The usage — locally (the skin, mucosa, in the pleura, joint cavity, etc.)

BROAD-SPECTRUM ANTIBIOTICS

Tetracyclines:

- 1) *biosynthetic* tetracycline, oxytetracycline;
- 2) semisynthetic methacycline, doxycycline);
- 3) combines oletetrine;
- Levomycetin levomycetin (chloramphenicol), synthomycin.

TETRACYCLINES

- *Biosynthetic* tetracycline, oxytetracycline
- Semi-synthetic metacycline, doxycycline (vibramycin)
- Combined oletetrine, ericycline

<u>Mechanism of action</u> — bacteriostatic; disturbance of synthesis of bacterial cell's protein — binding with 30S-subunit of ribosomeses results in disturbance of peptide chain; the formation of the chelate compounds with metals causes depression of the enzymic systems

Antimicrobial spectrum — broad: Gr+ and Grmicroflora, causative agents of plague, cholera, dysenteries, brucellosis, tularemia, malarias, rickettsial infection, spirochetes, actinomycetes, some protozoa, etc.

TETRACYCLINES

Chemotherapeutic spectrum

Preparations of choice with infections caused by Mycoplasmae, Chlamydia, Ricketsia, some Spirochetes

• They are effective with dysentery, brucellosis, tularemia,plague, cholera, meningitis, malaria, intestinal infections and biliary ducts

Pharmacokinetics

Absorption in the small intestine — from 30 to 100%; binding with proteins — 40–80%; **well penetrate** (except for the cerebrospinal fluid), **can deposit** in the osteal and dental tissues, easily penetrate through the placenta; T1/2 — 6–12 hrs and more, **excretion** by the kidneys, intestine, milk, saliva. The **enterohepatic cycle of metabolism** is peculiar to semi-synthetic ones

ADVERSE EFFECTS OF TETRACYCLINES

Superinfection

 Gastrointestinal disorders (glossitis, stomatitis, diarrhea, proctitis, etc.) Hepato- and nephrotoxicity Haematological deviations (trombocyto-, neutropenia, eosinophilia) Catabolic effect on macroorganism **Allergic reactions** Disturbance of the osteal and dental tissue formation (chelate compounds).

Contraindicated before 12 years old! •Teratogenicity •Photosensitization •Cross resistance

LEVOMYCETINE (CHLORAMPHENICOL)

<u>Mechanism of action</u> — bacteriostatic; disturbance of bacterial cell's protein synthesis — binding with 50S-subunit of ribosomes and the blockade of peptidyltransferase results in peptide chain disturbance

<u>Antimicrobial spectrum</u> — broad: Gr+ and Gr microflora, rickettsia, spirochetes, large viruses, bacteroids, etc. Resistance arises seldom</u>

The usage — with the threat of life and severe conditions at salmonellosis infections (typhoid fever), meningitis, sepsis, microflora resistance to other antibiotics Pharmacokinetics — is well absorbed, binding with proteins — 30%, well penetrates all the tissues, T1/2 — 6–8 hrs; biotransformation — conjugation and reduction; excretion by kidneys

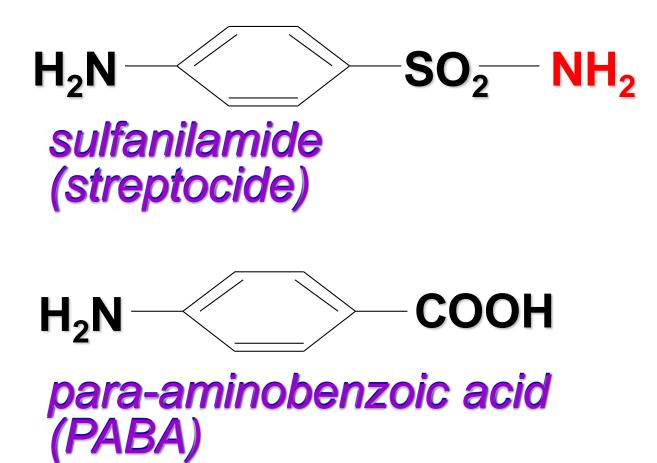
ADVERSE EFFECTS OF LEVOMYCETIN

- **Myelotoxicity** (leukopenia, agranulocytosis, reticulocytopenia, aplastic anaemia up to the lethal outcome!).
- Control of blood on every 2nd day
- "Grey baby syndrome"
- Superinfection
- Gastrointestinal disorders
- (glossitis, stomatitis, diarrhea, etc.)
- Hepato- and nephrotoxicity
- **Reaction of exacerbation** (with typhoid fever)
- Allergic reactions
- Neurotoxicity (ophthalmic nerve neuritis)

Karer & Metz in 1932 year in Germany it was synthesized and studied *in vitro* antibacterial activity of prontosile (red streptocidum)

G. Domage in 1935 year

at first it was shown *in vivo* its activity against hemolytic streptococcus and other bacteria



RINCLES OF RATIONAL CHEMOTHERAPY

- Rational choice of agent (depending on sensitivity of infectional agent, concomitant diseases, anamnesis etc);
- Early onset of treatment;
- Route of administration;
- Choice of dose for achievement of therapeutic concentration (depending on weight, age, sex, concomitant diseases etc.);
- Intervel of administration (depending on pharmacokinetic properties of agent);
- Ouration of therapy (principle of train);
- Combined therapy;

CHEMICAL STRUCTURE

Derivetive of sulfanyl acid (usually, white, has no smell, bitter, weak acids, badly dissolved in water)

Modification of aminogroup leads to physical, chemical, pharmacological properties;

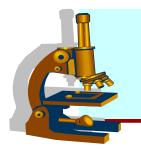
majority available as sodium salts

CLASSIFICATION OF SULFANILAMIDE AGENTS

- Well-absorbed in gastro-intestinal tract for resorptive action:
 - short-acting (T_{1/2} < 10 hrs) streptocide, ethazole, norsulfazole, sulfadimezine;
 - long-acting (T_{1/2}< 24-28 hrs) sulfapyridazine, sulfadimethoxine
 - ultralong (T_{1/2} < 65 hrs) sulfalen
- Badly absorbed in gastro-intestinal tract: phthalazole
- Combined:
 - with salicylic acid salazopyridazine, salazosulfapyridine;
 - with thimetháprim co-trimoxazole (bactrim, biseptol), sulfatone
- For local use streptocide, sulfacyl sodium & other sodium salts

PHARMACOKINETICS

Absorption (well-absorbed agents): mainly, in small intestine.

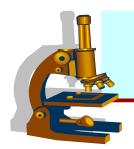

Binding with plasma proteins: 20-90 %.

Distribution: highest concentration – in liver, kidn lungs, skin; less – in fat tissues. Readily cross in liquid compartments of organism, including BBB, placenta.

Biotransformation: Acetylation, oxidation, glucuronidation or unchanged. Acetylated forms (especially in acidic medium!) precipitate in urine, leads to crystalluria.

Excretion: via kidneys, mainly, through glomerular filtration. Long-acting agents undergo reabsorption.

In children and aged people can be changed!



CONDITIONS, DETERMINING ANTIMICROBIAL ACTIVITY

The concentration of sulfonamides in 100-1000 times should overcome PABA concentration in substrate

Antibacterial activity drop at presence of pus, blood, products of tissue degradation, where PABA present in large amount

Action is bacteriostatic

- Highly susceptible microorganisms: cocci (pneumococci, gonococci, meningococci, streptococci), intestinal (E.coli, Salmonella, Vibrio cholera), large viruses (trachoma), Protozoal (Plasmodium, Toxoplasma gondii), Chlamydia, Cl. perfringens, Corynebacteria etc
- Moderately susceptible: staphylococci, enterococci, KI. pneumonia, Mycobacterium, Yersinia pestis, Actinomycets.

In combination with trimethaprim - bactericidic, antibacterial spectrum is more wide

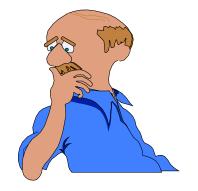
In result of often and unwise use of drugs staphylococci, meningococci, streptococci, gonococci, Enterobacter became resistant to sulfonamides

There is cross-resistance among sulfonamides.

GENERAL PRINCIPLES OF SULFONAMIDES THERAPY

- Rational choice of sulfanilamide
- Early beginning of treatment
- Route of administration
- Principle of loading dose
- Intervals of administration
- Duration of treatment

- Combined therapy (sulfanilamides should not be combined with!), interaction with other agents (novocain, diphenin, NSAIDs, synthetic hypoglycemic agents, diuretics, anticoagulants etc.)
- Increasing of immune resistance of organism (vitamins, immunomodulators).


- Acute coccal infections (pneumonia, tonsillitis, bronchitis, sinusitis, otitis, cholecystitis, meningitis etc.) – resorptive long- and ultra-long-acting (sulfadimethoxine, sulfalen), co-trimoxazol;
- Acute infections of bile & urinary ducts (cystitis, pyelonephritis etc.) resorptive short acting (urosulfan), co-trimoxazol;
- Acute intestinal infections (dysentery, enterocolitis, colitis etc.) badly absorbed (phthalazol); nonspecific ulcerative colitis salazosulfanilamides;
- Ophthalmic infections (conjuctivitis) sulfacylsodium;
- For the treatment of trachoma, malaria, chlamydiasis, toxoplasmosis, actinomycosis, lepra etc.

ADVERSE EFFECTS

- Renal damage : crystalluria, hematuria, urine retention
- Inhibition of bone marrow: leucopenia, agranulocytosis, anemias
- Hepatotoxicity: hepatitis, in children jaundice (insufficiency of glucuronyl transferase)
- Allergic reactions: dermatitis, синдром Stevens-Johnson syndrom etc
- **Dysbacteriosis (hypovitaminosis B, K)**.
- Neurotoxicity (dizziness, headache, mental depression)

CONDITIONS OF RATIONAL SULFANILAMIDE THERAPY

- Patient's anamnesis (did he/she take sulfanilamides before, disease)
- Loading dose!
- Alkaline drinking!
- Duration 6-8 days (at acute infections and especially in children and aged people)
- Control of urine and blood!
- For prevention of complications vitamins group B, probiotics, immuno-, biostimulators etc; πat complications – discontinuation of the drug, vitamins B, C.

MISCELLENOUS CHEMOTHERAPEUTIC AGENTS

- **Fluoroquinolones**
- A Naftiridine derivatives
- 4 8-oxyquinolines
- A Nitrofurane derivatives
- Imidazole derivatives
- **Quinoxolone derivatives**

FLUOROQUINOLONES

generation - ciprofloxacine, ofloxacine, pefloxacine, norfloxacine etc;
 generation - lomefloxacine, sparfloxacine;
 generation - flerofloxacine, trovafloxacine

Mechanism of action: Bactericidic – inhibit DNA-gyrase. Also possess immunomodulative activity.

Bacterial spectrum: Ultra-broad. Gr⁺ & Gr⁻ bacteria, Proteus, Pseudomonas, Chlamydia, Mycoplasma, Ureaplasma, Rickketsia, Legionella, Mycobacterium etc. Active against bacteria, resistant to other antimicrobial agents

Uses: infections of different localization

Adverse effects: in children – dysplasia of cartilage tissue (banned before 18 years and for pregnant!), dysbacteriosis and dyspepsia, allergic reactions, photosensibilization, hypercoagulation.

8-OXYQUINOLINES DERIVATIVES

Nitroxoline (5-NOK), chlorquinaldol, intetrix, oxolinic acid

Mechanism of action: Bactericidic – inhibit protein synthesis, chelate-formation, induction of oxidative process in protoplasma.

Bacterial spectrum activity: Broad. Gr⁺ & Gr⁻ bacteria (staphyloccoci, enterobacteria), Protozoal (amoeba, gardia), fungi.

Uses: Effective at resistance to other antibacterial agents.

- intestinal infection and dysbacteriosis (chlorquinaldol, intetrix);
- urinary tract infection (nitroxoline).

Adverse effects: subacute myelo-optic neuropathy (SMON), allergic reactions, abdominal cramps, nausea.

NITROFURANE DERIVATIVE

Furadonine, furazolidone, furagin; locally – furacillin.

Mechanism of action: Bacteriostatic & bacteriocidic(depending on concentration). Nitrogroup reduce to aminogroup, that inhibit synthesis of DNA, tissue respiration, Creb's cycle. pH < 5,5 increases action!

Bacterial spectrum: Gr⁺ & Gr⁻ bacteria, Protozoal (Amoeba, Gardia, trichomonada), large viruses, fungi.

Uses: Effective at resistance to antibiotics & sulfanilamides.

- intestinal infection (furazolidone);
- infection of urinary tract (furadonine, furagin).

Adverse effects: allergic reactions, neuritis, bleeding, methemoglobinemia, nephrotoxicity, dyspepsia, embryotoxicity.

Dioxydinum, chinoxydinum

Mechanism of action: Bactericidic – block of DNA synthesis

Bacterial spectrum: Gr⁺ & Gr⁻ bacteria, Proteus vulgaris, Pseudomonas, anaerobs. Active against bacteria resistant to other chemotherapeutic agents

Uses: arthritis, severe purulent-visceral processes, sepsis etc.

Adverse effects: mutagenic, teratogenic, embryotoxic, seizures, allergic reactions, hyperthermia

Only for adults under restrict doctor supervision !