
COMPARATIVE CHARACTERISTICS OF ANALGESICS

effect	analgesic		
	Narcotic	Non-narcotic	
Analgesic	pain of any origin	pain caused by inflammation	
Anti-inflammatory	-	+	
Anti-fever	-	+	
Hypnotic	+	-	
Euphoria	+	-	
Dependence	+	-	
Tolerance	+	-	
Breathing depression	+	-	

CLASSIFICATION OF NSAIDs

- derivatives of salicylic acid acetylsalicylic acid (ASA, aspirin), methylsalicylate
- derivatives of pyrazolon analgin (metamizole), butadion (phenylbutazone)
- derivatives of anylin paracetamol (acetaminophen)
- derivatives of phenylpropionic, phenylacetic and antranyl acids – ibuprofen, diclofenac-sodium, ketoprofen, mefenamic acid и др.
- derivatives of indolacetic acid indomethacin, etodolac
- derivatives of oxicams pyroxicam, meloxicam
- derivatives of different groups ketorolac, nimesulid, celecoxib etc.
- Combined agents baralgin, tempalgin, pentalgin, solpadein etc.

ACTION OF NSAIDs ON COX-1 & COX-2

CLASSIFICATION OF NSAIDs ACCORDING TO SELECTIVITY OF CYCLOOXYGENASE INH. (COX-1 & COX-2)

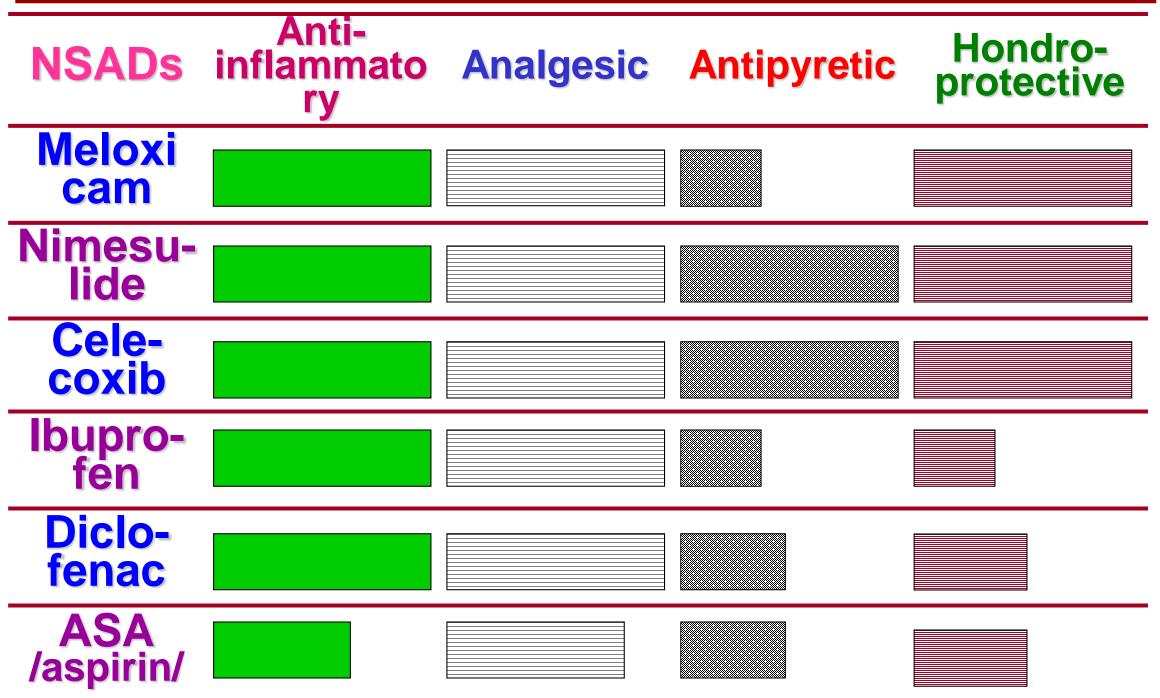
- Inhibitors of COX-1 & COX-2 majority of modern NSAIDs
- selective inhibitors of COX-1 acetylsalicylic acid (in small doses)
- selective inhibitors of COX-2 nimesulide, meloxicam
- highly-active COX-2 inhibitors celecoxib

MECHANISM OF ANALGESIC ACTION OF NSAIDs Tissue alteration cellular membrane epitettenezene phospholipase A₂ **NSAIDs** arachidonic acid toxygenase-2 prostaglandins vasodilatation, PG-receptors on sensitive **PG-receptors** increasing of in vessels permeability nerve endings bradykinin histamine etc edema, distention of organs' capsules PAIN

COMPARISON OF ANALGESIC ACTIVITY OF NSAIDs

ketorolac > piroxicam > diclofenac sodium > naproxen > indomethacin > butadion > mefenamic acid > analgin > brufen > paracetamol > acetylsalicylic acid

MECHANISMS OF ANTI-INFLAMMATORY EFFECTS OF NSAIDs


- Inhibition of prostaglandins synthesis (inhibition of cyclooxygenase)
- Inhibition of adhesion (inhibition of cells migration in site of inflammation)
- Lysosome ⇒ ↓ hydrolytic enzymes release (proteases, lipases, phosphatases)
- Anti-alterative action (↑ collagen stability and its maturation)
- Antagonism with mediators of inflammation (\u00cc histamine, serotonin, bradykinin synthesis)
- Decreasing of energy supply of inflammation (inhibition of ATP synthesis, disintegration of phosphorylation, ATP-ase inhibition)
- Immunotropic action () specific reaction on antigen, T-lymphocytes proliferation, interleukin synthesis)

ANTIPYRETIC ACTION OF NSAIDs

development of fever → increasing of PGE₂ synthesis in hypothalamus → deposition of cAMP → alteration of Na⁺ and Ca²⁺ ratio → function of heat center → function o

 $\begin{array}{l} \textit{NSAIDs} \rightarrow \textit{decreasing of PGE}_2 \textit{synthesis} \\ \rightarrow \textit{restoring of thermoregulatory center} \\ \textit{function} \rightarrow \textit{increasing of heat release} \\ \textit{vasodilatation of skin vessels and} \\ \textit{increasing of sweating} \end{array}$

PHARMACOLOGICAL EFFECTS OF MODERN NSAIDS

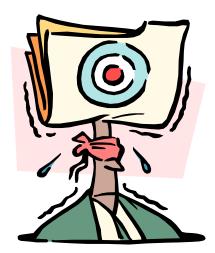
RULES OF NSAIDs PRESCRIPTION

- Personal agent's choice: analgesic effect (first hours) followed by anti-inflammatory (after 10-14 days of regular usage)
- Dosing (up- and down- methods)
- Time of ingestion:
 - after meal; for achievement of rapid analgesic or antipyretic effect should be given 30 min before meal or 2 hrs after meal with 1/2-1 glass of water; after ingestion it is recommended not to lie for esophagitis prevention
 - according to time of maximal disturbances: at morning stiffness it is wise to take a quickly absorbed drug in the morning (naproxen, diclofenac-sodium, aspirinupsa, ketoprofen) or prescribing of long-acting agents at bedtime

THERAPEUTIC USES OF NSAIDs

- after-operation pain of intermediate intensity
- headache, toothache
- spasms of bile-, urinary ducts (in combination with spasmolytics)
- connective tissue diseases (rheumatoid arthritis, osteoarthritis, back pain, myocarditis, glomerulonephritis etc.), gout (indomethacin, naproxen etc)
- traumas, inflammations (injures, joint dislocation, miositis, neuralgia etc)
- fever during infectional diseases
- Prevention and treatment of thrombosis – ASA (325 mg once in 3 days)

PHARMACOKINETICS OF NSAIDs


- Absorption: majority weak acids ⇒ absorption in stomach; if ↑ pH upto 3,5 ↓ ulcerogenic effect but effectiveness as well;
- Administration: oral, rectal, I.M., I.V., transdermal; possible first-pass effect!
- **Plasma protein binding: 50-99** %, ASA replace T₃, T₄, uric acid, phenytoin, oral anticoagulants
- **Distribution:** well-penetrate, including BBB (especially at acidosis) !
- **Biotransformation:** significant amount of ASA conjugate with glucuronic acid, glycin, undergo oxidation to non-active metabolites; certain are excreted unchanged (ketorolac)

Excretion: mainly, via kidneys, urine alkalinization excretion. T ½ ASA in daily dose 0,6 g – 4-5 hrs, in dose 4 g – upto 15 hrs!

ULCEROGENIC ACTION OF NSAIDs

- dyspepsia 30-40 %
- gastric and duodenal erosion or ulcer 10-20 %
- bleeding and perforation 2-5 %

Ulcerogenic risk:

ketoprofen > piroxicam > indomethacin >
naproxen > aspirin > diclofenac > analgin >
ibuprofen

ULCEROGENIC EFFECTS OF NSAIDs

improvement of drugs' tolerance:

- Simultaneous administration of drugs that protect GI mucosa: NSAID + misoprostol, proton pump inhibitors, H₂-antagonists (?), cytoprotectors (sucralfate)
- Changes in treatment strategy: dosage decreasing; shift for parenteral (?), rectal (?) or local application; usage of intestinal-dissolved drugs; usage of pro-drugs (sulindac)
- Usage of selective COX-2 inhibitors (meloxicam, nimesulide, celecoxib)

NSAIDs NEPHROTOXICITY

(5-10 %):

Renal failure:

 disturbance of water-salt balance: water, sodium retention, hypercreatinemia, edema,
 ABP (indomethacin, butadion, COX-2 inhibitors)

Direct action on renal parenchyma:

- acute papillary necrosis (ibuprofen)
- acute interstitial nephritis «analgesics nephropathy» (butadion, indomethacin, analgin, ibuprofen, paracetamol)

NSAIDs HEPATOXICITY

Agents	Type of injury	Mechanism of injury	Relative frequency	Morta- lity
Aspirin	hepato- cellular	toxic	dose- dependent	Yes
Butadion	-»-, cholestasis	-»-, hyper- sensitivity	3	Yes
Indome- thacin	hepato- cellular	unknown	2	Yes
Ibuprofen	-»-	-»-	1	Yes
Ketoprofen	enzymes turnover	-»-	1	No
Piroxicam	hepato- cellular	hyper- sensitivity	1	Yes
Diclofenac	-»-	unknown	3	Yes

Paracetamol – direct toxin (at daily dose > 6 g) Selective COX-2 inhibitors are also hepatotoxic

Dyscrasia cause by NSAIDs

- anemias (hypochromic anemia, hemolytic anemia etc) pyrazolons, indomethacin, ASA
- thrombocytopenia (cytotoxic reaction of allergic origin)
- Ieucopenia upto agranulocytosis pyrazolons
- coagulopathy with bleeding: ↓ platelets aggregation (антиагрегантное) and prothrombin synthesis in liver (mild anticoagulant) – ASA, indomethacin
- methemoglobinemia paracetamol
- acute intravascular hemolysis with following renal failure (deficiency of glucose-6-phosphate dehydrogenase) – ASA

OTHER ADVERSE EFFECTS OF NSAIDs

- CNS: headache, dizziness, fatigue, insomnia, mental confusion (ASA, ketorolac, indomethacin etc – 1- 10 %
- allergic reactions (12-15 %):
 - angioedema, allergic interstitial nephritis, Steven-Johnson, anaphylaxia (especially pyrazolon derivatives)
 - «aspirin asthma», rhinitis, conjuctivitis ASA
 - allopecia brufen
 - frequency of appearance: diclofenac > piroxicam > brufen > indomethacin > ketoprofen

OTHER ADVERSE EFFECTS OF NSAIDs

- Cardiovascular toxicity: ↑ BP, heart beat celecoxib, myocardiodystrophy butadion
- cartilage tissue degeneration
- teratogenic (ASA palatine dissection in fetus (8-14 per 100 observations); fetotoxicity (indomethacin – preterm closing of ductus arteriosum); prolongation of pregnancy and delivery (indomethacin etc)
- mutagenic effect (↑ chromosomal abberation in lymphocytes – ASA, butadion)
- Rey's syndrome in children (heave hepatic encephalopathy with mortality 150%)

NARCOTIC ANALGESICS

Agents that are able at resorptive action πto suppress pain impulses transmission, aat repetitive uses able to produce physical dependence (drug-abuse)

Sources:

opium (from Greece. opos - juice) – dry poppy juice (Papaver somniferum)

Opium alkaloids:

- fenantrane derivatives: morphine, codeine, tebaine
- isoquinolone derivative: papaverine, narcotin

ALAKALOIDS

Alkaline-like plant-origin compounds that contain nitrous

- solid, colorless, bitter, optically active
- alkalines are bases that are badly dissolved in water, well in organic solvents
- salts of alkaloids visa versa

Inactivation reactions

 \succ Tanin, iodides \rightarrow

Potassium permanganate — universal oxidizer

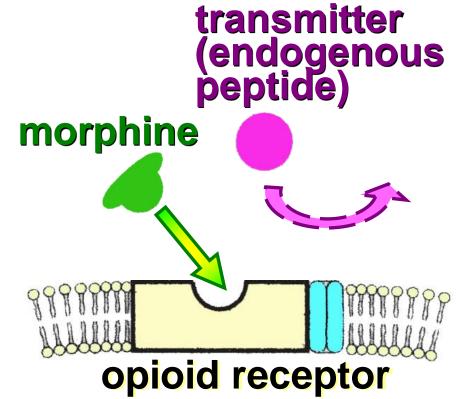
CLASSIFICATION OF NARCOTIC ANALGESICS ACCORDING TO CHEMICAL STRUCTURE

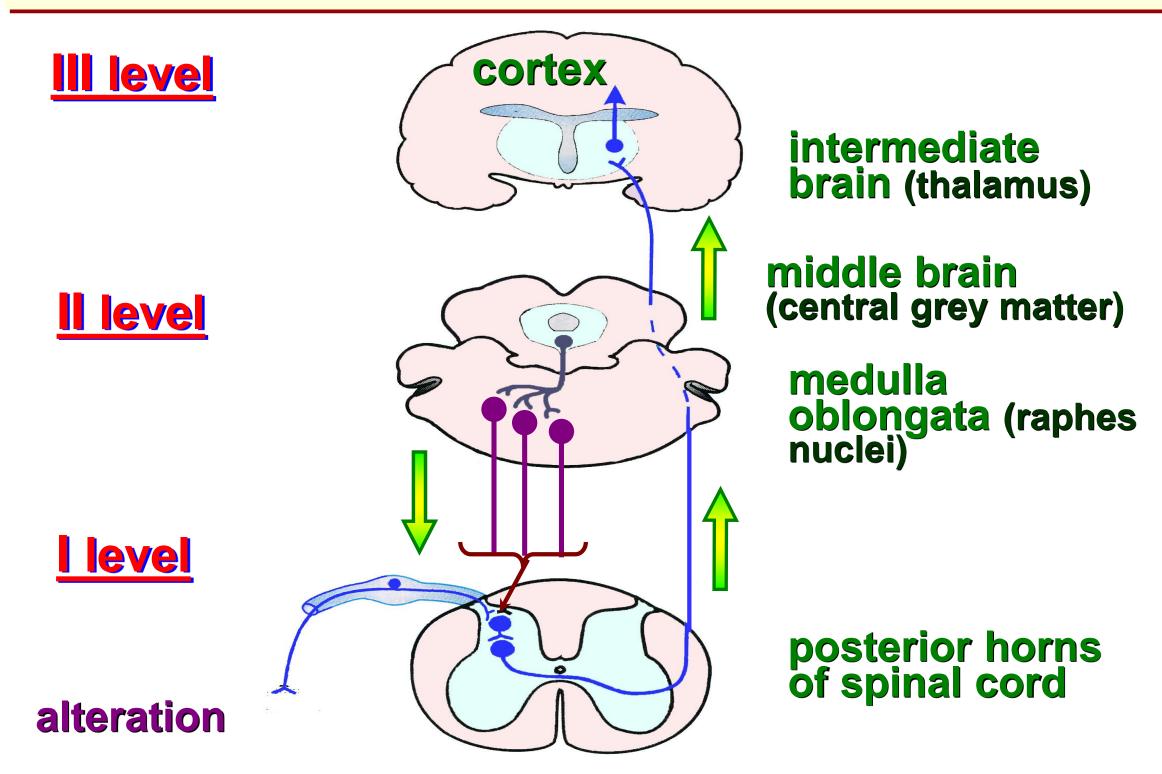
derivatives of fenantren:

- opium alkaloids morphine, codeine, omnopon
- Synthetic analogues ethylmorphine, buprenorpine, nalbuphine, nalorphine, naloxone, naltrexone
- derivatives of benzomophans pentazocine
- derivatives of piperidine promedol (trimeperidine), fentanyl, loperamide
- derivatives of heptanone methadone
- different chemical groups tramadol etc

FUNCTION OF OPIOID RECEPTORS

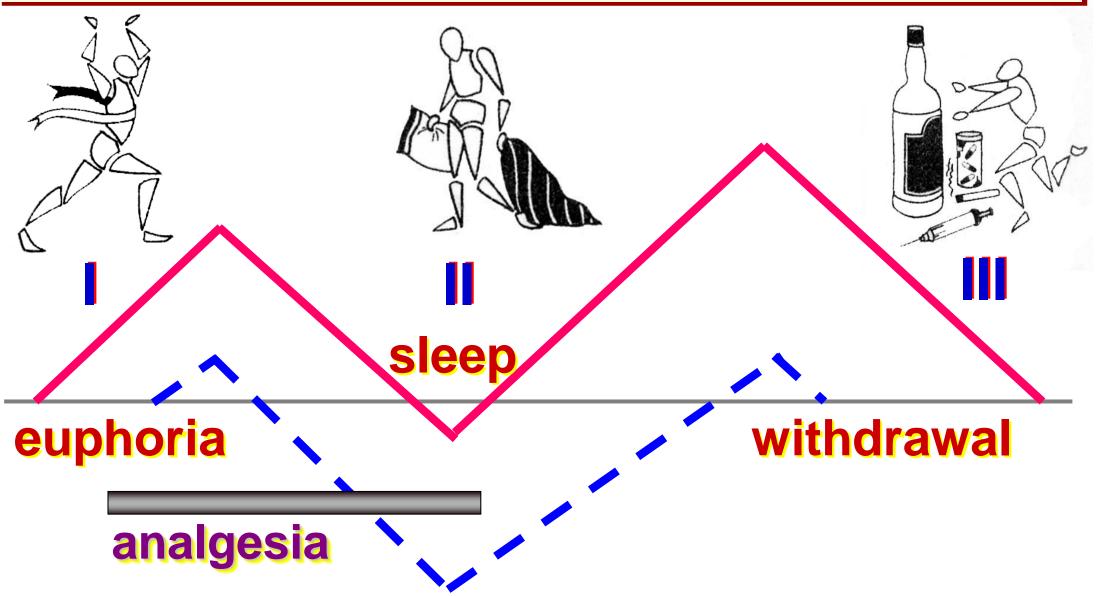
Opioid receptors (μ, κ, δ, ε, σ) – lipoprotein sites with high affinity to endogenous peptides (enkephalines, endomorphines) and narcotic analgesics in neuronal membranes that transmit pain impulses


properties	μ (mu)	к (kapa)	δ (delta)
Activation	analgesia, dependence, euphoria, vegetative reactions	analgesia, sedation, miosis	emotion, seizures, vegetative reactions
Activators: • endogenous peptides	β-endorphines мет- enkephalines	dinorphine neoendorphine	leu- enkephaline
 narcotic analgesics 	morphine, fentanyl, promedol etc	pentazocine, buprenorphine etc	-


CLASSIFICATION ACCORDING TO AFFINITY TO OPIOID RECEPTORS

Agonists: Strong (full) – morphine, promedol, fentanyl, methadone Moderate – codeine, omnopone

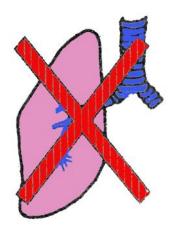
- Agonists-antagonists: buprenorphine, nalorphine, pentazocine, tramadol
- Antagonists: naloxone, naltrexone


SITES OF MORPHINE'S ACTION

ANALGESIC ACTION OF NARCOTIC ANALGESICS

- insignificant increasing of pain threshold
- Inhibition of pain transmission in spinal cord
- presence of папti-anxety and euphoric effects, supression of pain expectation etc
- mainly effective during chronic visceral pain висцеральных болях

STAGES OF MORPHINE ACTION

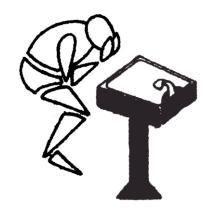


during first use during prolong misuse

MORPHINE PHARMACODYNAMIC

CNS:

- Brain cortex: euphoria ("rash"), sedation, shallow sleep
- Medulla oblongata:
 - respiratory center ↓ (decreasing of frequency and amplitude of breathing excursion, decreasing of CO₂ sensitivity)
 - cough center –
 - heat center ↓ (hypothermia)
 - n. vagus center ↑ (bradycardia, bronchospasm etc)
 - vomiting center ↑ or ↓
- Middle brain:
 center of III cranial nerve pain (miosis)



MORPHINE PHARMACODYNAMIC

- CVS: insignificant dropping of BP, bradycardia, increasing of intracranial pressure
- breathing: bronchospasm
- GIT: ↑ tonus, spasm of gastric, intestinal, Oddi's sphincters, but ↓ peristaltic ⇒ prolong evacuation of meal from stomach (8-12 hrs), constipation and spasmogenic effects (colics)
- urinary bladder: ↓ urination (sphincters' spasm, ↑ secretion of ADH), but ↑ tonus ⇒ colic; uterus: ↓ tonus

PHARMACOKINETICS OF NARCOTIC ANALGESICS

- Administration: the majority are well-absorbed from oral, nasal, GI mucosa
- **Bioavailability:** undergo first-pass effect ⇒ S.C., I.M., I.V., transdermal (fentanyl), oral (codeine);
- Plasma-protein binding: 20-96 %
- **Distribution:** cinitially well penetrate into CNS, lungs, liver, kidneys, spleen; later into skeletal muscles (reservoir), fat tissues

Biotransformation: significant part metabolized in polar non-active compounds, esters (heroin), hydrolyzed to morphine; part conjugated with glucuronic acid (morphine etc).

Excretion: via kidneys, partially with bile T ¹/₂ of morphine – 4-6 hrs!

COMPARATIVE CHARACTERISTICS OF NARCOTIC ANALGESICS

indicators	morphi ne	prome dol	fenta- nyl	penta- zocine	trama- dol
dose (mg)	10	20-40	0,1	30	50-100
duration of action (hrs)	4-5	3-4	0,5	2-3	3-5
euphoria	+++	++	+	+	+
respiratory depression	+++	++	++++	+	+
hemodynamic	↓HR	Uncha nged	↓ BP, ↓ HR	↑ BP, ↑ HR	↓ BP, ↑ HR
spasmodic effect	+++	++	+++	+	+
nausea, vomiting %	35-40	2-35	Rarely	2-6	5
withdrawal	+++	+++	++	++	+

THERAPEUTIC USES OF NARCOTIC ANALGESICS

- Serious traumas and burns (morphine, promedol, fentanyl etc.)
- Myocardial infarction (fentanyl etc.)
- Pulmonary edema (morphine, promedol)
- Renal and liver colics, acute pancreatitis (pentazocine, promedol, fentanyl, omnopone etc)
- Uncurable cancer (morphine, promedol etc)
- Preanesthetic medication & postoperative period (pentazocine, morphine, promedol, fentanyl)
- Neuroleptanalgesia, ataralgesia (fentanyl)
- Spinal analgesia (morphine)
- Pain relieve during delivery (pentazocine, promedol)

ADVERSE EFFECTS OF NARCOTIC ANALGESICS

- restlessness, tremor, hyperactivity (if dysphoria)
- respiratory depression
- nausea, vomiting, constipation, urine retention
- postural hypotension (if hypovolemia), ↑ intracranial pressure,
- Itching, angioedema (after parenteral administration)
- Itolerance, including cross-resistance: begins after 1st dose; more quickly develop for analgesic, euphoric, respiratory depression, later - to hypotensive, vomiting, antidiuretic effects; but not to myorelaxant, constipative, convulsive
- psychical and physical dependence drug-abuse

ABUSE – CHRONIC POISONING

- psychical dependence: euphoria, emotional indifference lead to abuse;
- physical dependence: accompanied with tolerance; the main goal to avoid withdrawal syndrome
- withdrawal syndrome:
 - 1. acute phase (7-10 days):
 - after 8-10 hrs lacrimation, yawning, rhinorhea, sweating
 - after 36-48 ч insomnia, tiredness, rigor, «goose» skin, nausea, vomiting, myalgia, uncontrolled movements, dyspnea, fever, hypertension, diarrhea
 - 2. protracted phase (26-30 weeks) hypotension, bradycardia, hypothermia, mydriasis, ↓ respiration
- Ouring disease progression: alteration of psychical activity (irritability, flaccidity, decreasing of self-estimation), loss of appetite, of skin sensitivity, sweating and other vegetative disturbances

ACUTE POISONING BY NARCOTIC ANALGESICS

- mental confucion, coma
 miosis, followed by mydriasis
- hyphothermia
- hypotension
- breathing is rare (2-4 per min), that can turn to Chein-Stoke
- urine retention
- preserving of spinal tendal reflexes (unlike barbiturates !)
- acidosis

Opium-user, 1872 V.Vereschagin

Tre reason of death – respiratory cencer depression !

FIRST AID AT POISONING BY NARCOTIC ANALGESICS

- Breathing restoration (mechanical ventilation)
- Antidote therapy
 - Physiological antagonists:
 - competitive naloxne (0,001-0,004 I.V.)
 - non-competitive atropine
 - Physical adsorbents
 - Chémical проtassium permanganate
 - Stomach lavage
 - Speeding up of drugs' excretion (hydration & dehydration therapy)
 Hemosorbtion

Symptomatic therapy:

- Myotroic anti-spasmodic
 Alkaline solution
- cardiotonic
- Cathetherization of urinary bladder

