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1 Particle-Wave Duality
Both the electromagnetic radiation (photons) and particles exhibit a particle-wave duality and both may be characterized with wavelength  λ  and momentum p related to one another through the following expression
λ = h/p ,
(1)
where h is the Planck's constant.
In relation to particles, (1) is referred to as the de Broglie relationship and λ is referred to as the de Broglie wavelength of a particle in honour of Louis de Broglie who in 1924 postulated the existence of matter waves.
The wave nature of the electron was confirmed experimentally by Clinton J. Davisson and Lester H. Germer in 1927 who set out to measure the energy of electrons scattered from a nickel target. The target was in the form of a regular crystalline alloy that was formed through a special annealing process. The beam of electrons was produced by thermionic emission from a heated tungsten filament. The electrons were accelerated through a relatively low variable potential difference  V  that enabled the selection of the incident electron kinetic energy  EK.

Davisson and Germer discovered that for certain combinations of electron kinetic energies  EK  and scattering angles    the intensity of scattered electrons exhibited maxima, similarly to the scattering of X-rays from a crystal with a crystalline plane separation  d  that follows the Bragg relationship with  m  an integer
2d sin = m λ .                                      (2)

Davisson and Germer determined the wavelength  λe  of electrons from the measured scattering angle  at which the electron intensity exhibited a maximum. The measured  λe  agreed well with wavelengths calculated from the de Broglie relationship.
The experimentally determined particle-wave duality suggests that both the particle model and the wave model can be used for particles as well as for photon radiation. However, for a given measurement only one of the two models will apply. For example, in the case of photon radiation, the Compton effect is explained with the particle model, while the diffraction of x rays is explained with the wave model. On the other hand, the charge-to-mass ratio  e/me  of the electron implies a particle phenomenon, while the electron diffraction suggests wave-like behavior. 

Associated with any particle is a matter wave. This matter wave is referred to as the particle's wave function  Ψ(x,y,z,t)  for three-dimensional problems and contains all the relevant information about the particle. Quantum mechanics or wave mechanics, developed by Erwin Schrodinger (wave mechanics) and Werner Heisenberg (matrix mechanics) between1925 and 1929, is a branch of physics that deals with the properties of wave functions as they pertain to particles, nuclei, atoms, molecules and solids.
2 Introduction to Wave Mechanics
The main characteristics of wave mechanics are as follows:
· The theory has general application to microscopic systems and includes Newton's theory of macroscopic particle motion as a special case in the macroscopic limit.
· The theory specifies the laws of wave motion that the particles of any microscopic system follow.
· The theory provides techniques for obtaining the wave functions for a given microscopic system.
· It offers means to extract information about a particle from its wave function.
The main attributes of wave functions  Ψ(x,y,z,t)  are:
· Wave functions are generally but not necessarily complex and contain the imaginary number i.
· Wave functions cannot be measured with any physical instrument.
· Wave functions serve in the context of Schrodinger's wave theory but contain physical information about the particle they describe.
· Wave functions must be single-valued and continuous functions of  x,y,z  and  t to avoid ambiguities in predictions of the theory.
The information on a particle can be extracted from a complex wave function Ψ(x,y,z,t)  through a postulate proposed by Max Born in 1926 relating the probability density  dP(x,y,z,t)/dV  with the wave function  Ψ(x,y,z,t)as follows:
dP(x,y,z,t)/dV = Ψ*(x,y,z,t)•Ψ(x,y,z,t) = |Ψ(x,y,z,t) |2.
 (3)
where  Ψ*  is the complex conjugate of the wave function  Ψ.
The probability density is real, non-negative and measurable. In wave mechanics, the total probability of finding the particle somewhere is equal to 1, if the particle exists. We can use this fact to define the following normalization condition
∫dP(x,y,z,t) = ∫|Ψ(x,y,z,t) |2dV = 1 .
        (4)
where the volume integral extends over all space and represents a certainty that the particle will be found (unit probability).
While the normalization condition expresses certainty that a particle, if it exists, will be found somewhere, the probability that the particle will be found in any interval  a < z < b  is obtained by integrating the probability density from  a  to  b. 
3 Quantum-Mechanical Wave Equation
The particulate nature of photons and the wave nature of matter are referred to as the wave-particle duality of nature. The waves associated with matter are represented by the wave function  Ψ(x,y,z,t)  that is a solution to a quantum mechanical wave equation. This wave equation cannot be derived directly from first principles of classical mechanics; however, it must honor the following four conditions:
1. It should respect the de Broglie postulate relating the wavelength  λ  of the wave function with the momentum  p  of the associated particle:  p = h/λ = ħk, where k is the wave number defined  as  k = 2π/λ.
2. It should respect the Planck's law relating the frequency v of the wave function with the total energy  E  of the particle:  E = hv = ħω,  where  ω  is the angular frequancy defined as  ω = 2π/T.
3. It should respect the relationship expressing the total energy  E  of a particle of mass  m  as a sum of the particle's kinetic energy  EK = p2/(2m)  and potential energy  V,  i.e.,  E = p2/(2m) + V.
4. It should be linear in  Ψ(x,y,z,t)  which means that any arbitrary linear com​bination of two solutions for a given potential energy  V  is also a solution to the wave equation.
In most physical situations the potential energy  V(x,y,z,t)  only depends on x,y,z, i.e.,  V(x,y,z,t) = V(x,y,z)  and then the time-dependent Schrodinger equation can be solved with the method of separation of variables and we obtain the so-called time-independent Schrodinger wave equation for the potential V(x,y,z):
− ħ 2/(2m) (∂2Ψ/∂x2 + ∂2Ψ/∂y2 + ∂2Ψ/∂z2 ) + V(x,y,z)Ψ = EΨ      (5)
The essential problem in quantum mechanics is to find solutions to the time-independent Schrodinger equation for a given potential energy V, gen​erally only depending on spatial coordinates. The solutions are given in the form of:
1. Physical wave functions Ψ(x,y,z) referred to as eigenfunctions.
2. Allowed energy states E referred to as eigenvalues.
The time-independent Schrodinger equation does not include the imaginary number i and its solutions, the eigenfunctions, are generally not complex. Since only certain functions (eigenfunctions) provide physical solutions to the time-independent Schrodinger equation, it follows that only certain values of E referred to as eigenvalues are allowed. This results in discrete energy values for physical systems and in energy quantization. 
Many mathematical solutions are available as solutions to wave equations. However, to serve as a physical solution, an eigenfunction  Ψ(x,y,z)  and its derivatives 
∂Ψ/∂x,   ∂Ψ/∂y  and  ∂Ψ/∂z
must be: (1) finite, (2) single valued,, and (3) continuous.
Corresponding to each eigenvalue  En  is an eigenfunction  Ψn(x,y,z)  that is a solution to the time-independent Schrodinger equation for the potential  V(x,y,z). 
4 Uncertainty Principle
In classical mechanics the act of measuring the value of a measurable quantity does not disturb the quantity; therefore, the position and momentum of an object can be determined simultaneously and precisely. However, when the size of the object diminishes and approaches the dimensions of microscopic particles, it becomes impossible to determine with great precision at the same instant both the position and momentum of particles or radiation nor is it possible to determine the energy of a system in an arbitrarily short time interval.
Werner Heisenberg in 1927 proposed the uncertainty principle that limits the attainable precision of measurement results. The uncertainty principle covers two distinct components:
· The momentum-position uncertainty principle deals with the simultane​ous measurement of the position z and momentum pz of a particle and limits the attainable precision of z and pz measurement to the following 
             ∆z∆pz > ħ/2 ,                                      
(6)
where  ∆z  is the uncertainty on  z  and  ∆pz  is the uncertainty on  pz. There are no limits on the precision of individual  z  and  pz  measurements. However, in a simultaneous measurement of  z  and  pz  the product of the two uncertainties cannot be smaller than  ħ/2, where  ħ  is the reduced Planck's constant. If  z  is known precisely  (∆z = 0), then we cannot know pz,  since  ∆pz = ∞. The reverse is also true: if  pz  is known exactly  (∆pz = 0), then we cannot know  z,  since  ∆z =  ∞. 
· The other component (energy-time uncertainty principle) deals with the measurement of the energy  E  of a system and the time interval  ∆t  required for the measurement. Similarly to the  (∆z,∆pz)  situation, Heisenberg uncertainty principle states the following
           ∆t∆E > ħ/2,                                               (7)
where ∆E is the uncertainty in the energy determination and ∆t is the time interval taken for the measurement.
Classical mechanics sets no limits on the precision of measurement results and allows a deterministic prediction of the behavior of a system in the future. Quantum mechanics, on the other hand, limits the precision of measurement results and thus allows only probabilistic predictions of the system's behavior in the future.
5 Complementarity Principle
      In 1928 Niels Bohr proposed the principle of complementarity postulating that 
any atomic scale phenomenon for its full and complete description requires that both its wave and particle properties be considered and determined, since the wave and particle models are complementary. 
This is in contrast to macroscopic scale phenomena where particle and wave characteristics (e.g., billiard ball vs. water wave) of the same macroscopic phenomenon are mutually incompatible rather than complementary.
Bohr's principle of complementarity is thus valid only for atomic size processes and asserts that these processes can manifest themselves either as waves or as particles (corpuscules) during a given experiment, but never as both during the same experiment. However, to understand and describe fully an atomic scale physical process the two types of properties must be investigated with different experiments, since both properties complement rather than exclude each other.
The most important example of this particle-wave duality is the photon, a mass-less particle characterized with energy, frequency and wavelength. However, in certain experiments such as in Compton effect the photon behaves like a particle; in other experiments such as double-slit diffraction it behaves like a wave.
Another example of the particle-wave duality are the wave-like proper​ties of electrons as well as heavy charged particles and neutrons that manifest themselves through diffraction experiments.
6 Tunneling
The particle-wave duality is highlighted in discussions of potential wells and potential barriers in quantum and wave mechanics; the potential wells attract and trap particles, potential barriers reflect or transmit them. While medical physics and clinical physics rarely deal with quantum and wave mechanics, there are several physical phenomena of importance to radiation physics and, by extension, to medical physics that can only be explained through wave-mechanical reasoning. 
Tunneling, for example, is a purely wave-mechanical phenomenon that is used in explaining two important effects in radiation physics:  a-decay and field emission. In addition, there are several other phenomena of importance in electronics that can be explained invoking tunneling such as, for example, in the periodic inversion of the ammonia molecule NH3, used as standard in atomic clocks, and in a semiconductor device called tunnel diode that is used for fast switching in electronic circuits.
A classical particle incident on a square barrier will pass the barrier only if its kinetic energy  Ek  exceeds the barrier potential  EP. If  EP > EK,  the classical particle is reflected at the barrier and no transmission occurs because the region inside the barrier is forbidden to the classical particle.
A quantum-mechanical particle incident on a square barrier has access to regions on both sides of the barrier, irrespective of the relative magnitudes of the kinetic energy  Ek  and the barrier potential  Ep. 
A matter wave is associated with the particle and it has a non-zero magnitude on both sides of the barrier as well as inside the barrier. The wave penetrates and traverses the barrier even when  EP > EK,  clearly contravening classical physics but conforming to the rules of wave mechanics. 
The wave function associated with a quantum-mechanical particle incident on a barrier must be continuous at the barrier, will exhibit an exponential decay inside the barrier, and will be continuous on the far side of the barrier. 
The non-zero probability for finding the particle on the opposite side of the barrier indicates that the particle may tunnel through the barrier or one may say that the particle undergoes the tunneling effect. In tunneling through a barrier, the particle behaves as a pure wave inside the barrier and as a pure particle outside the barrier.
Alpha decay is considered a tunneling phenomenon in which  a-particles  with kinetic energies between 4 MeV and 9 MeV tunnel through a potential barrier of the order of 30 MeV. The tunneling theory of the  a-decay  was proposed by George Gamow in 1928. 
Inside the parent nucleus (atomic number  Z) the a-particle is free yet confined to the nuclear potential well by the strong nuclear force. The dimension of the well is of the order of few fm; once the a-particle is beyond this distance from the center of the parent nucleus, it only experiences Coulomb repulsion between its charge  2e  and the charge of the daughter nucleus  (Z — 2)e.
A classical a-particle with kinetic energy  EK < 9 MeV  cannot overcome a potential barrier with  EP > 30 MeV. On the other hand, a a-particle with wave-like attributes may tunnel through the potential barrier and escape the parent nucleus through this purely quantum-mechanical phenomenon.
Field emission is another interesting effect that is explained by the tunneling phenomenon. Here one relies on the wave phenomena of electrons to explain how electrons tunnel through a potential barrier (of the order of the work function) to escape the atoms of a metal through the application of a very strong electric field.
This effect may be considered cold cathode emission in contrast to the well-known heated cathode emission that is used in the so-called Coolidge x-ray tubes, electron guns in linear accelerators. Modern application of field emission is in field emission microscope and in scanning tunneling microscope.
7 Geiger—Marsden Experiment and Rutherford Atomic Model
Hans Geiger and Ernest Marsden in 1909 carried out an experiment studying the scattering of 5.5 MeV a-particles on a thin gold foil with a thickness of the order of 10-6 m. The a-particles were obtained from radon-222, a natural a-particle emitter. The experiment, its peculiar and unexpected results had a profound effect on modern physics in particular and on the humanity in general.
At the time of the Geiger-Marsden experiment Thomson's atomic model was the prevailing atomic model based on an assumption that the positive and the negative (electron) charges of an atom were distributed uniformly over the atomic volume ("plum-pudding model").
Joseph J. Thomson, who is also credited with the discovery of the electron in 1897, proposed an atomic model in which the negatively charged electrons were dispersed uniformly within a continuous spherical distribution of posi​tive charge with a radius of the order of 1 Ǻ. The electrons formed rings and each ring could accommodate a certain upper limit in the number of electrons and then other rings began to form. 
In the ground state of the atom the electrons are fixed at their equilibrium positions and emit no radiation. In an excited state of the atom the electrons oscillate about their equi​librium positions and emit radiation through dipole oscillations by virtue of possessing charge and being continuously accelerated or decelerated (Larmor relationship). With this ring structure Thomson could in principle account for the periodicity of chemical properties of elements.
Geiger and Marsden found that more than 99% of the a-particles incident on the gold foil were scattered at angles less than 3° and that their distribution followed a Gaussian distribution. However, Geiger and Marsden also found that one in  ~ 104 a-particles was scattered with a scattering angle  >90°  which implied a probability of 10-4 for scattering with  >90°,  in drastic disagreement with the probability of 10-3500 predicted by the theory based on the Thomson's atomic model.
The theoretical result of 10-3500 for the probability of a-particle scattering with a scattering angle greater than 90° on a Thomson atom is an extremely small number in comparison with the result of 10-4 obtained experimentally by Geiger and Marsden. This highlighted a serious problem with the Thomson's atomic model.
It was Ernest Rutherford, who concluded that the peculiar results of the Geiger-Marsden experiment did not support the Thomson's atomic model and proposed a completely new model in which:
· essentially all mass and positive charge of the atom are concentrated in the nucleus the size of which is of the order of 10-15 m;
· negatively charged electrons revolve about the nucleus and are distributed in a spherical cloud on the periphery of the Ruther​ford atom with a radius of the order of 10-10 m. 
8 Bohr Model of the Hydrogen Atom
Niels Bohr in 1913 combined Rutherford's concept of the nuclear atom with Planck's idea of the quantized nature of the radiative process and developed an atomic model that successfully deals with one-electron structures such as the hydrogen atom, singly ionized helium, doubly ionized lithium, etc. 
The model, known as the Bohr model of the atom, is based on four postulates that combine classical mechanics with the concept of angular momentum quantization. The four Bohr postulates are stated as follows.
1. Postulate 1: Electrons revolve about the Rutherford nucleus in well-defined, allowed orbits (often referred to as shells). The Coulomb force of attraction    Fcoul = Ze2/(4nε0r2) between the electrons and the positively charged nucleus is balanced by the centripetal force  Fcent = mv2/r, 
Ze2/(4πε0r2) = mv2/r,                             (8)
where  Z  is the number of protons in the nucleus (atomic number);  r  the radius of the orbit or shell;  me  the electron mass,  v  the velocity of the electron in the orbit and  ε0  the permittivity of free space.
2. Postulate 2: While in orbit, the electron does not lose any energy despite being constantly accelerated (this postulate is in contravention of the basic law which states that an accelerated charged particle will lose part of its energy in the form of radiation).
3. Postulate 3: The angular momentum  L = mevnrn  of the electron in an allowed orbit is quantized and given as  L = nħ, 
mevnrn = nħ,                                           (9)
where n is an integer referred to as the principal quantum number and  ħ = h/(2π) is the reduced Planck's constant with  h  the Planck's constant. The simple quantization of angular momentum stipulates that the angular momentum can have only integral multiples of a basic value (ħ).
4. Postulate 4: An atom or ion emits radiation when an electron makes a transition from an initial allowed orbit with quantum number  ni  to a final allowed orbit with quantum number  nf   for  ni > nf.
The angular momentum quantization rule simply means that  ħ  is the lowest angular momentum available to the electron  ( n = 1, ground state) and that higher  n  orbits    (n > 1, excited states) can only have integer values of  ħ  for the magnitude of the orbital angular momentum, where  n  is the principal quantum number or the shell number. 
From first and third Bohr postulate we get the following relationship for  rn, the radius of the  n-th allowed Bohr orbit
rn  =  4πε0ħ2n2/Zme2 = a0n2/Z                        (10)
where  a0  is called the Bohr radius of a one electron atom (a0 = 0.5292 Ǻ).
Inserting the expression for  rn  of (10) into (9) we obtain the following expression for  vn,  the velocity of the electron in the  n-th allowed
vn = Ze2/4πε0ħn.                                                (11)
The electron velocity in the ground state  (n =1)  orbit of hydrogen is less than 1% of the speed of light c, the use of classical mechanics in one-electron Bohr atom is justifiable. 
Both Rutherford and Bohr used classical mechanics in their momentous discoveries of the atomic structure and the kinematics of electronic motion, respectively. On the one hand, nature provided Rutherford with an atomic probe (naturally occurring a-particles) having just the appropriate energy (few MeV) to probe the atom without having to deal with relativistic effects and nuclear penetration. On the other hand, nature provided Bohr with the hydrogen one-electron atom in which the electron can be treated with simple classical relationships.
The total energy  En  of the electron when in one of the allowed orbits (shells) with radius  rn  is the sum of the electron's kinetic energy  EK  and potential energy  EP
En = Ek + Ep = — Ze2/(8πε0rn) = — mZ2e4/(8ε02h2n2) = — Z2ER/n2,    (12)
where  ER  called the Rydberg energy. 
Equation (12) represents the energy quantization of allowed bound electronic states in a one-electron atom. This energy quantization is a direct consequence of the simple angular momentum quantization  L = nh  introduced by Bohr. The 5 lowest bound energy levels  (n = 1  through  n = 5) of the hydrogen atom according to (12) are: 
—13.6 eV (the Rydberg energy), —3.4 eV, —1.51 eV, —0.85 eV, and —0.54 eV.
The following features can be easily identified:
· The negative energy levels of the electron represent discrete allowed electron states bound to the nucleus with a given binding energy.
· The positive energy levels represent a free electron in a continuum of allowed kinetic energies.
· The zero energy level separates the discrete allowed bound electron states from the continuum of kinetic energies associated with a free electron.
· Electron in  n = 1  state is said to be in the ground state; an electron in a state with  n > 1  is said to be in an excited state.
· Energy must be supplied to an electron in the ground state of a hydrogen atom to move it to an excited state. An electron cannot remain in an excited state; rather it will move to a lower level shell and the transition energy will be emitted in the form of a photon.
The energy  hυ  of a photon emitted as a result of an electronic transition from an initial allowed orbit with  ni  to a final allowed orbit with  nf,  where  ni > nf,  is given by
hv = Ei — Ef  = mZ2e4/(8ε02h2)(1/nf2 — 1/ni2) = Z2ER(1/nf2 — 1/ni2).       (13)

Table  Characteristics of the first five emission series of the hydrogen atom
	Name of
	Spectral
	Final
	Initia
	
	Limit of
	Limit of

	series
	range
	orbit
	orbit
	
	series (eV)
	series (A)

	
	
	nf
	ni
	
	
	

	Lyman
	ultraviolet
	1
	2,3,4 ... ∞
	
	13.6
	912

	Balmer
	visible
	2
	3,4,5 ... ∞
	
	3.4
	3646

	Paschen
	infrared
	3
	4,5,6 ... ∞
	
	1.5
	8265

	Brackett
	infrared
	4
	5,6,7 ... ∞
	
	0.85
	14584

	Pfund
	infrared
	5
	6,7,8 ... ∞
	
	0.54
	22957


Photons emitted by excited atoms are concentrated at a number of discrete wavelengths (lines). The hydrogen spectrum is relatively simple and results from transitions of a single electron in the hydrogen atom. Table gives a listing for the first five known series of the hydrogen emission spectrum. It also provides the limit in eV and A for each of the five series. 
With his four postulates and the innovative idea of angular momentum quan​tization Bohr provided an excellent extension of the Rutherford atomic model and succeeded in explaining quantitatively the photon spectrum of the hydrogen atom and other one-electron structures such as singly ionized helium, doubly ionized lithium, etc.
According to the Bohr atomic model, each of the five known series of the hydrogen spectrum arises from a family of electronic transitions that all end at the same final state  nf.  The Lyman  (nf = 1), Brackett  (nf = 4), and Pfund  (nf = 5) series were not known at the time when Bohr proposed his model; however, the three series were discovered soon after Bohr predicted them with his model.
In addition to its tremendous successes, the Bohr atomic model suffers two severe limitations:
· The model does not predict the relative intensities of the photon emission in characteristic orbital transitions
· The model does not work quantitatively for multi-electron atoms.
9 Quantum Numbers
Bohr's atomic theory predicts quantized energy levels for the one-electron hydrogen atom that depend only on  n, the principal quantum number, since  En = — ER/n2, where  ER  is the Rydberg energy.
In contrast, the solution of the Schrodinger's equation for the hydrogen atom gives three quantum numbers for the hydrogen atom:  n,  l,  and  ml,  where:
· n  is the principal quantum number with allowed values  n = 1, 2, 3 ..., giving the electron binding energy in shell  n  as  En = —ER /n2, 
· l  is the orbital angular momentum quantum number giving the electron orbital angular momentum  L = ħ√l(l + 1)   and has the following allowed values 
l = 0, 1, 2, ... n — 1,

· ml is referred to as the magnetic quantum number giving the  z  component of the orbital angular momentum  Lz = mlħ  and has the following allowed values: 
ml  = —l, —l + 1, —l + 2, ... l —2 , l —1, l.
Experiments by Otto Stern and Walter Gerlach in 1921 have shown that the electron, in addition to its orbital angular momentum  L,  possesses an intrinsic angular momentum. 
This intrinsic angular momentum is referred to as the spin S and is specified by two quantum numbers:   s = 1/2   and   ms   that can take two values (1/2 or —1/2). The electron spin and its  z  component are given as
S = ħ√s(s + 1) = ħ√3/2               Sz = msħ.
The orbital and spin angular momenta of an electron actually interact with one another. This interaction is referred to as the spin-orbit coupling and results in a total electronic angular momentum  J  that is the vector sum of the orbital and intrinsic spin components, i.e.,  J = L+S. 
· The total angular momentum  J  has the value  J = ħ√j(j + 1)  where the possible values of the quantum number j are:
|l - s|,  l - s +1, ...  l + s,
with  s = 1/2  for all electrons.
· The z component of the total angular momentum has the value  Jz = mjħ,  where the possible values of mj are: 
—j, —j + 1, —j + 2, ... j — 2, j — 1, j.
The state of an atomic electron is thus specified with a set of four quantum numbers:
· n,  L,  ml,  ms  when there is no spin-orbit interaction or
· n,  L,  j,  mj  when there is spin-orbit interaction.
10 Correspondence Principle
Niels Bohr postulated that the smallest change in angular momentum  L  of a particle is equal to  ħ  where  ħ  is the reduced Planck's constant. This is seemingly in drastic disagreement with classical mechanics where the angular momentum as well as the energy of a particle behave as continuous functions. In macroscopic systems the angular momentum quantization is not noticed because  ħ  represents such a small fraction of the angular momentum; on the atomic scale, however,  ħ  may be of the order of the angular momentum making the  ħ  quantization very noticeable.
The correspondence principle proposed by Niels Bohr in 1923 states that for large values of the principal quantum number  n  the quantum and classical theories must merge and agree. In general, the correspondence principle stipulates that the predictions of the quantum theory for any physical system must match the predictions of the corresponding classical theory in the limit where the quantum numbers specifying the state of the system are very large. 
11  Multi-electron Atoms
A multielectron atom of atomic number  Z  contains a nucleus of charge  +Ze surrounded by  Z  electrons, each of charge   —e   and revolving in an orbit about the nucleus. The kinematics of electron motion and energy levels of electrons in a multi-electron atom are governed by
1. kinetic energy of orbital electron,
2. attractive Coulomb force between the electron and the nucleus,
3. repulsive Coulomb force exerted on the electron by the other  Z -1  atomic electrons,
4. weak interactions involving orbital and spin angular momenta of orbital electrons,
5. minor interactions between the electron and nuclear angular momenta,
6. relativistic effects and the effect of the finite nuclear size.
12 Exclusion Principle
Wolfgang Pauli in 1925 eloquently answered the question on the values of quantum numbers assigned to individual electrons in a multi-electron atom. 
Pauli's exclusion principle that states: "In a multielectron atom there can never be more than one electron in the same quantum state" is important for the understanding of the properties of multi-electron atoms and the periodic table of elements.
According to Pauli's exclusion principle in a multi-electron atom no two electrons can have all four quantum numbers identical.

The energy and position of each electron in a multi-electron atom are most affected by the principal quantum number  n. The electrons that have the same value of  n  in an atom form a shell.
Within a shell, the energy and position of each electron are affected by the value of the orbital angular momentum quantum number  l. Electrons that have the same value of l in a shell form a sub-shell.

The specification of quantum numbers  n  and  l  for each electron in a multi-electron atom is referred to as the electronic configuration of the atom.
Pauli's exclusion principle confirms the shell structure of the atom as well as the sub-shell structure of individual atomic shells:
· Number of electrons in sub-shells that are labeled with quantum numbers 
n,  l,  ml:    2(2l +1)
· Number of electrons in sub-shells that are labeled with quantum numbers 
n,  l,  j:       2j + 1
n-1
· Number of electrons in a shell:
           2∑(2l +1) = 2n2
Main characteristics of atomic shells
	Principal quantum number n
	1
	2
	3
	4
	5

	Spectroscopic notation
	K
	L
	M
	N
	O

	Maximum number of electrons
	2
	8
	18
	32
	50

	Main characteristics of atomic subshells

	Orbital quantum number l
	0
	1
	2
	3
	4

	Spectroscopic notation
	s
	p
	d
	f
	g

	Maximum number of electrons
	2
	6
	10
	14
	18


l=o
The main characteristics of atomic shells and sub-shells are given in Table. 
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2. L.D. Korovina. Biophysics with beginnings of mathematical analysis and statistics. Extended course of lectures. – Vol.1. Bases of mathematical analysis, probability theory and mathematical statistics. Biomechanics. Poltava, 2017.

3. L.D. Korovina. Biophysics with beginnings of mathematical analysis and statistics. Extended course of lectures. – Vol.2. Bases of thermodynamics. Biomembranes. Electricity and magnetism. Poltava, 2017.

4. L.D. Korovina. Biophysics with beginnings of mathematical analysis and statistics. 

Extended course of lectures. – Vol.3. Optics. Quantum phenomena. Poltava, 2018.
                                                Online resources
1. https://info.odmu.edu.ua/chair/biophysics/files/428/en (Methodic resources of the department)

2. http://amphu.org (Medical Physics in Ukraine) 

3. http://uamedphys.blogspot.com (Books on Medical Physics) 

4. http://iopscience.iop.org/0031-9155 (Journal of Physics in Medicine and Biology)

5. http://mednavigator.net (Medical search engine)

6. https://physicsworld.com/c/medical-physics (Information resources of medical and biological physics)

7. http://iomp.org (International Organization of Medical Physics)

8. https://aapm.org/default.asp (Website of the American Association of Physicists in Medicine)

9. https://aapm.onlinelibrary.wiley.com/journal/24734209 ((Journal «Medical Physics»)

10. https://efomp.org (Website of the European Federation of Medical Physicists)

11. https://www.facebook.com/AmericanMedicalAssociation/
