

Overview of Ophthalmic Equipment and Support Systems for Ophthalmology

Health Care Technology Unit ORBIS DC-10 Flying Eye Hospital

Introduction

- Eye anatomy and common diseases
- Diagnostic instruments
- Therapeutic instruments
- Additional ophthalmic instruments
- Support systems for Ophthalmology

Anatomy of the Eye

Key anatomy of

- Cornea: protective outer layer, triggers blink reflex, tear duct secretion, and 2/3 of total refraction.
- Aqueous Humor: clear fluid behind the cornea.
- Iris: (pupil) constricts and dilates
- Retina: coats the back of the eye, image sensor
- Lens: flexible, transparent, provides 1/3 refraction that focuses an image on the retina.
- Vitreous Humor: semi-gelatinous material filling the volume between the lens and the retina.

Six sub-specialties of ophthalmology

1. Cornea & Cataract

2. Retina & Vitreous

Retinal Detachment

Macular Diseases

Diabetic Retinopathy

Six sub-specialties of ophthalmology

3. Glaucoma

- 4. Oculoplastics (trauma, birth defects, tumors, cosmetics)
- 5. Pediatrics & Strabismus

6. Neuro-ophthalmology (optic disk, optic nerve, brain)

Direct Ophthalmoscope

- View provided by the direct ophthalmoscope:
 - monocular;
 - non-stereoscopic (2D);
 - narrow field (5°);
 - magnified about 15X.

Binocular Indirect Ophthalmoscope (BIO)

Binocular Indirect Ophthalmoscope (BIO)

Doctor Patient

Binocular Indirect Ophthalmoscope (BIO)

- Instrument of choice for retinal examinations.
- Used in conjunction with a condensing aspheric lens held close to the patient's eye.
- BIO provides:
 - a much wider field of view (45°) than a direct ophthalmoscope;
 - permits viewing of almost all the patient's retina;
 - stereoscopic view (3D);
 - inverted;
 - illuminated with magnification of about 5X.
- Some BIOs have a built-in video camera to permit eye care professionals in-training to view the examination on a video monitor.

Slit Lamp

Fundus camera, retinal camera

Fundus camera, retinal camera

- Specialized low power microscope with an attached camera, designed for taking pictures of the back of the eye, or fundus.
- Often used in fluorescein angiography:
 - fluorescein dye is injected into a patient to reveal retinal circulation.
- Digital fundus cameras can be interfaced with a computer for storage of the retinal images as graphic files:
 - files can be archived, edited, printed or sent to other eye care specialists through a local area network or over the World Wide Web.

Fundus camera, retinal camera

Diagnostic tools for quantitative measurements

- Applanation: Measures the force that is required to flatten the cornea in mmHg.
- Non-contact: A soft puff of air is directed to the patient's eye and the resulting corneal deformity is measured and converted to pressure.
- Schiotz: A footplate that is placed on the cornea and a central movable plunger that is fitted into a barrel. Attached to the plunger is a needle and scale for measurement.

Diagnostic tools for quantitative measurements

Keratometer

- Measures the curvature of the anterior central zone of the cornea (K readings, in millimeters radius of curvature or in diopters);
- K readings are used for fitting contact lenses, evaluating corneal astigmatism and for calculating intraocular lens (IOL) power.

Diagnostic tools for quantitative measurements

Phoropter, refractor

 Can reproduce virtually any possible optical correction.

- Measures the curvature of the anterior central zone of the cornea (K readings, in millimeters radius of curvature or in diopters);
- K readings are used for fitting contact lenses, evaluating corneal astigmatism and for calculating intraocular lens (IOL) power.

Ultrasound can provide quantitative and qualitative information about the eye

A-scan

- Ultrasonic waves are reflected at interfaces
- A-scans give accurate <u>quantitative</u> measurements

A MODE

Probe on axis

Ultrasound can provide quantitative and qualitative information about the eye

B-scan

B-scans have a moving transducer which scans in 2 dimensions

B-scans provide a <u>qualitative</u> view of the eye

B MODE

Example: Retinal detachment

THE ULTRASONIC EXAMINATION OF THE EYE

Topographic analysis: B mode (Brightness)

Quantitative analysis: A mode (Amplitude)
Biometry

Kinetic analysis:
B Mode and/or Doppler

Operating Microscopes allow Microsurgery on Exterior and Interior of ORBIS the Eye

Operating Microscopes

Operating Microscopes

- Utilized for procedures that require high magnification and variable focusing.
- Light from a halogen light source is directed into the tube through prisms or fiber optic cables and shines through the objective lens onto the operating field.
- Magnification of the eyepieces is typically 8X to 20X.
- The typical focal length (working distance) of objective lenses for eye surgery using a 12.5X eyepiece is 175 to 200 mm

Phacoemulsification

- Ultrasonic energy (25 80Khz), is used to break up the opaque lens into smaller pieces that are then aspirated out of the eye.
- After the entire cataract is removed, an intraocular lens (IOL) is inserted in place of the eye's lens.

Phacoemulsification

Vitrectomy

Vitrectomy

Vitrectomy

Cryo Surgical Units - CSU

Cryo Surgical Units - CSU

- CSU apply a refrigerant (cryogen) to withdraw heat from target tissue through contact with a cryogen-cooled probe.
- The effect is to freeze the surrounding tissue so that it dies.
- In the tissue immediately beyond the killed zone a degree of coagulation occurs thus limiting the resulting bleeding.
- Different types of interchangeable cryo probes are available for different applications.
- Cryogens in ophthalmology: Compressed nitrous oxide (N2O) and carbon dioxide (CO2).

Ophthalmic LASERs

Laser are used as therapeutic ophthalmic equipment

 Different laser have different properties and are used for different therapies

Argon	488, 515 nm blue/green
Nd:YAG	1064 nm infrared
Diode	810 nm infrared
Excimer	193 nm ultraviolet

Lasers allow non-invasive surgery

Glaucoma

Cataract

Lasers allow non-invasive surgery

Retinal diseases

Argon Or Diode

Refractive correction

Excimer

Laser Delivery systems

- Slit lamp
- Endoprobe
- Indirect ophthalmoscope
- Operating microscope

Diode Laser with Slit Lamp

Diode Laser with Endoprobe

Diode Laser with Indirect Ophthalmoscope

LASER SAFETY

Bioengineered operating room supplies

methylcellulose

intra-ocular lenses

polymethylmethacrylate

• silicone (foldable)

Support systems for ophthalmology

Machines to anesthetize and monitor the patients

Modern Anesthesia Machines

Continuous-flow anesthesia system

Figure . Continuous-flow anesthesia system

Reproduced from Health Care Product Comparison System, ECRI. 2003 – Anesthesia Units

Surgical equipment must be sterilized

ethylene oxide (EtO)

27 psig 132 °C 10 min

55 °C 3.5 psia 1 hr treat 15 min vent

heat flash

autoclave/EtO bags

clear, impermeable front

semipermeable backing

Acknowledgements

ALCON Laboratories

ORBIS saving sight worldwide

