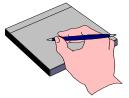
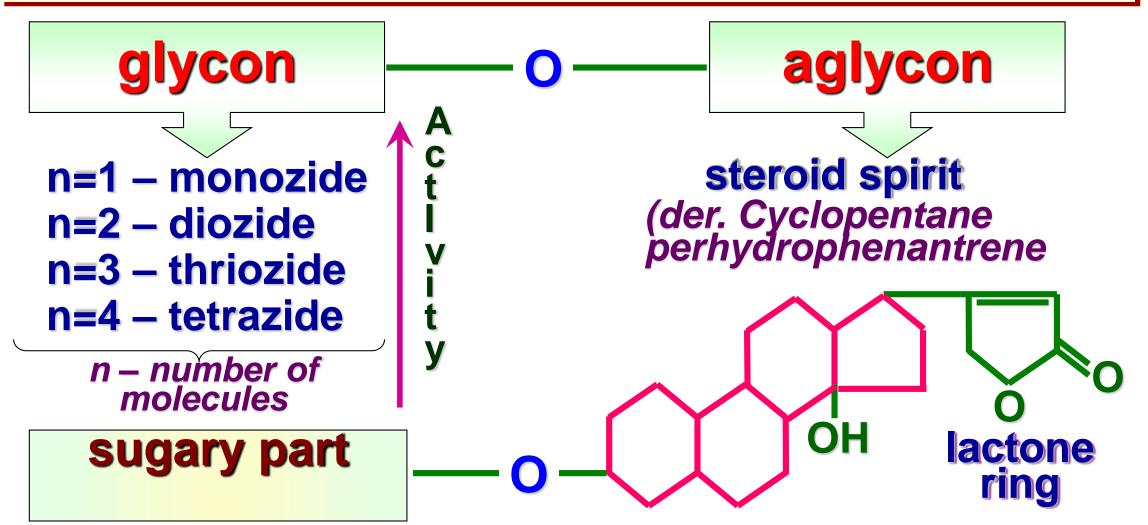

Odesa National Medical University Department of General and Clinical Pharmacology and Pharmacognosy AGENTS AGTING ON CARDIOVASCULAR SYSTEM. GARDIOTONIGS. ANTIARRYTHMIC AGENTS

CARDIAC GLYCOSIDES (CG) –

(greek. "glikis" - sweat) Substances of plant origin that consist of 2 parts: nitrous-free (aglycon) and sugary (glycon), which possesses the cardiotonic and cardiotrophic actions, used for the treatment of heart failure

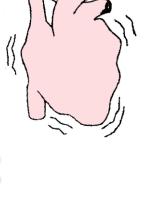



- Long-acting agents with significant cumulation :
 - Ladyfingers (Digitalis purpurea) digitoxin, cordigit
- Intermediate-acting agents with middle cumulative properties :
 - Woolly foxglove (Digitalis lanata) digoxin, celanide, lantoside
 - Adonis spring (Adonis vernalis) adoniside

Short-acting agents with insignificant cumulation:

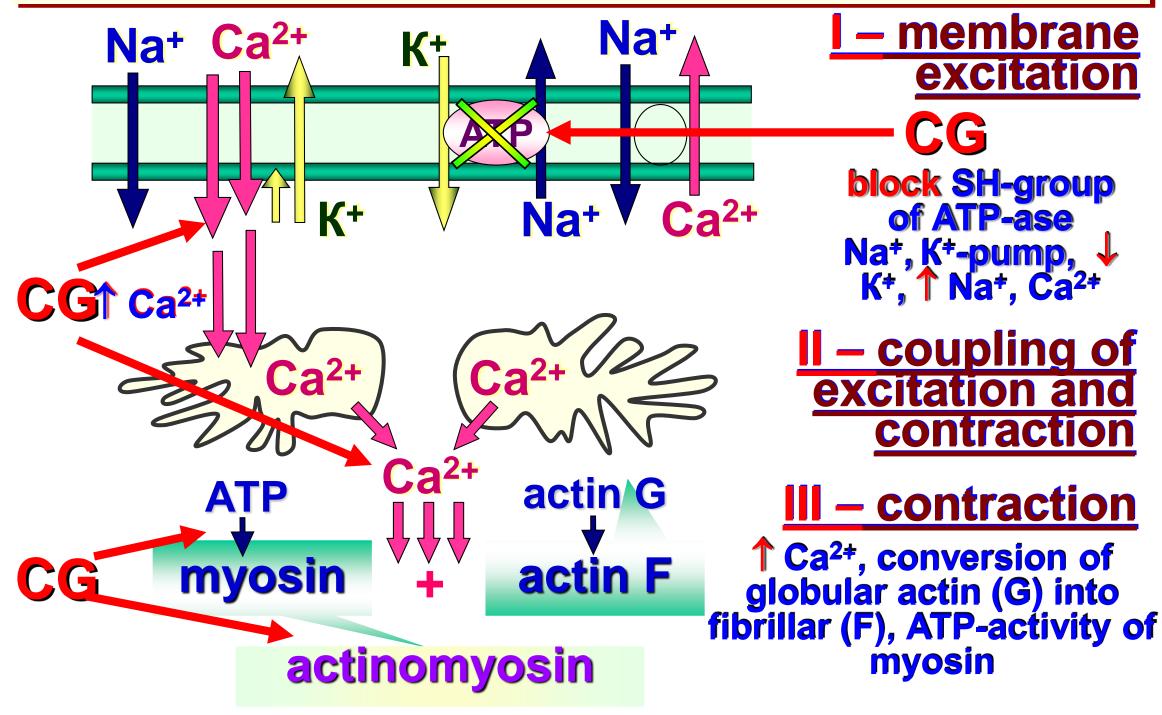
- Strophantin (Strophanthus) strophantin
- Lily of the valley (Convallaria majalis) corgylcon, tincture of convallaria

STRUCTURE OF CARDIAC GLYCOSIDES


pharmacokinetic and biological activity in general

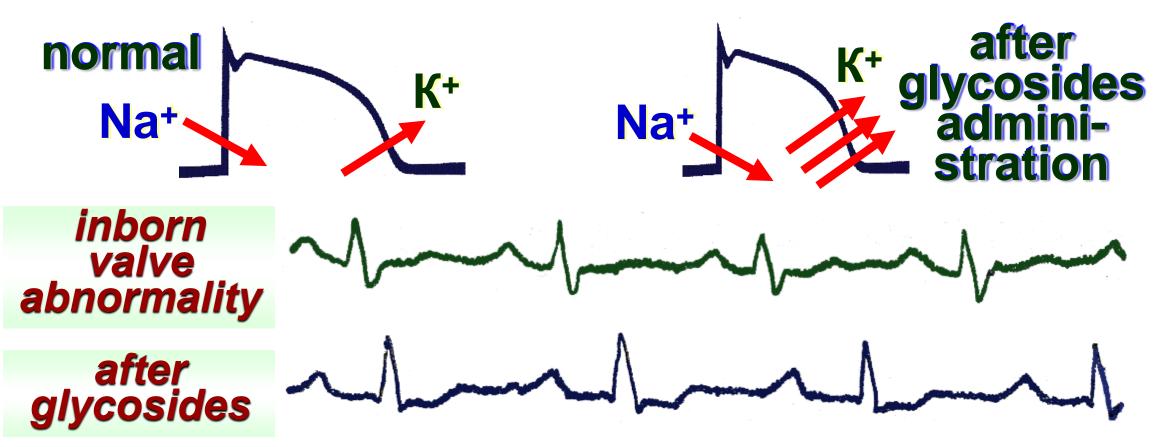
cardiotonic properties

PHARMACODYNAMIC OF CARDIAC GL.


cardiac glycosides:

- «+» inotropic (systolic) increasing and shortening of systole
 - «+» tonotropic ↑ myocardial tonus
- «-» chronotropic (diastolic) ↓ heart rate
- «--» dromotropic ↓ conductivity
- **«+» bathmotropic** ↑ excitability

MECHANISM OF THE CARDIOTONIC ACTION OF CARDIAC GLYCOSIDES


PHARMACODYNAMICS OF CG

according to «+» inotropic effect:

- Ca²⁺ –CG enhancer
 - K⁺ and SH-group donators (unithiol etc) CG antagonists
- «+» tonotropic:
- «–» chronotropic (diastolic):
 - vagus influence in reflex way from baroreceptors of sinocarotid zone and myocardium «vagal factor»;
 - reflex tachycardia because of direct antiadrenergic impact –«extra-vagal factor»
- Cardiotrophic: restoring energy, lipid balance, O₂ consumption, liposomal stabilization, tissue hypoxia

ECG CHANGES

In the therapeutic doses:

- T wave (early symptom 1 tissue metabolism), ST down from isoelectric line, inotropic effect);
- PP interval («-» chronotropic effect),
- modest ↑ PQ («-» dromotropic effect)

PHARMACODYNAMICS OF CG

non-cardiac effects:

hemodynamics:

- Cardiac output
- Arterial BP may ↓ or ↑ (become normal)
- venous pressure (unloading of venous compartment of systemic circulation)
- diastolic pressure in the ventricles sub-endocardiac bloodflow
- Image of pressure in pulmonary circulation (improvement of gases exchange → decreasing of cyanosis, dyspnoea, tissue hypoxia, metabolic acidosis)
- ↑ systemic and cerebral blood circulation

PHARMACODYNAMICS OF CG

non-cardiac effects:

kidneys: diuretic effect via:

- renal blood flow and glomerular filtration
- reabsorption of water, Na⁺, and Cl⁻:
- blood coagulation: ↓ blood coagulation (corglycon), ↑ blood coagulation (foxgloves' agents, strophantin)
- CNS: sedation (medicines of Lily of valley and Adonis)

PHARMACOKINETICS CG

Indexes	Foxgloves' group	Strophantin group
GIT asborption	70-96 % (lipid-soluble) ,	3-8 % (water-soluble)
route of administrat. and onset of action	oral (0,5-2 hrs), I.V. (5-30 min)	I.V. ! (after 2-5 min)
plasma protein binding	tight (20-97 %)	слабая <mark>(10-20 %)</mark>
T 1⁄2	digoxin – 40 hrs digitoxin – 168 hrs	20-25 hrs
cumulation	significant !	low

INDICATIONS FOR CARDIAC GLYCOSIDES

- acute heart failure (corglycon, strophantin, digoxin
 I.V., diluted with sodium chloride solution!)
- chronic heart failure : decompensated heart valve abnormalities, cardiosclerosis, overloading of myocardium at arterial hypertension etc. (for oral intake)
- supraventricular tachycardia (!): paroxysmal tachycardia, atrial flutter, and atrial fibrillation

MANAGEMENT OF CG DOSING

principles of digitalization:

saturation phase:

- rapid (during 1 day 100 % of full-dose)
- intermediate (3-4 days; at 1-st day 1/2 of full-dose)
- slow (5-7 days; at 1-st day 1/4 of full-dose)
- maintaining phase (long-lasting): maintaining dose = full-dose x elimination (%) / 100 %

Symptoms of the therapeutic level of digitalization:

- normal heart rate instead of tachycardia
- transformation of tachysystolic form of atrial fibrillation into bradysystolic, elimination of pulse deficit
- clinical symptoms of heart failure (dyspnoe, cyanosis, oedema, 1 daily diuresis), ↓ liver size

- «–» dromotropic suppression of AVconductivity (↓ PQ, dropping-out of QRS):
- «+» bathmotropic alteration of conductivity + automacity ⇒ ectopic areas (around 20 types of arrhythmia, especially ventricular)
 cardiac symptoms (50-90 %):
- initially bradycardia with ectopic beats
- followed by tachycardia with sharp TPP
- then ventricular tachyarrhythmia upto ventricular fibrillation and death !

extra-cardiac effects:

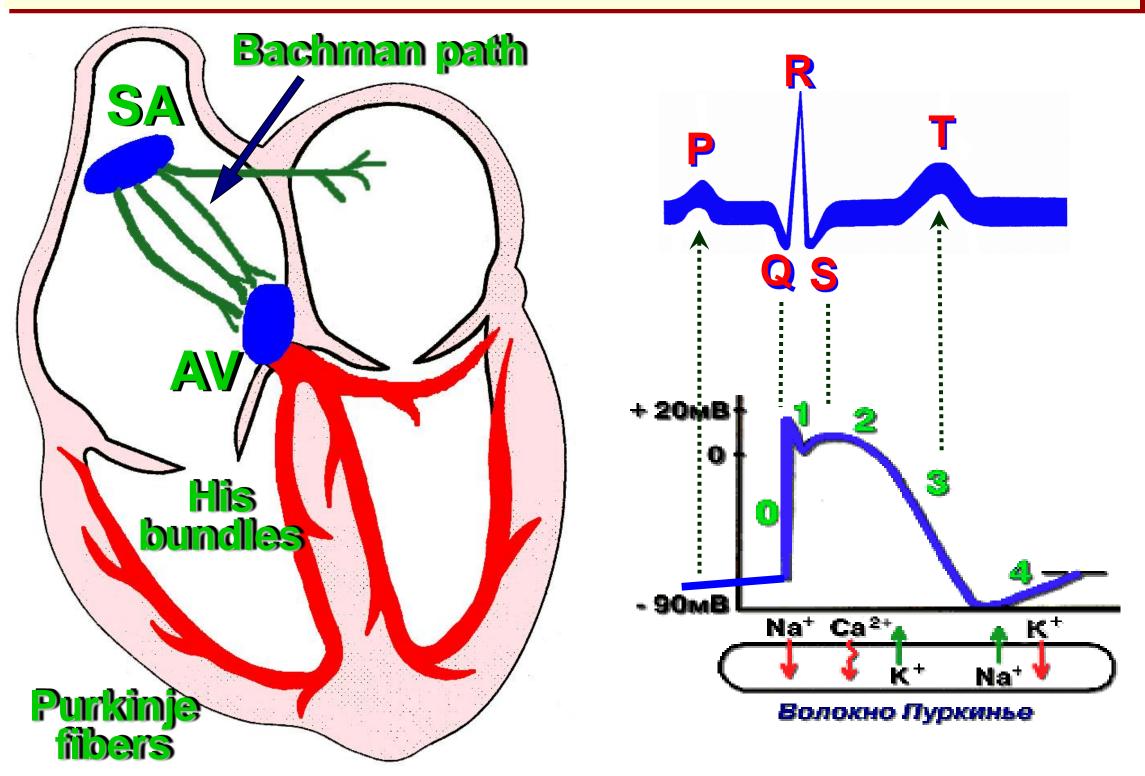
- GIT-disturbances (75-90 %): anorexia, vomiting spasm of intestine, diarrhea (↑ vagal tonus), intestinal necrosis (spasm of splanchical vessels) – as the rule, develop before cardiac symptoms!
- neurological (30-90 %): xantopsia (95 %), headache, insomnia, neuralgia of n.trigeminis and n.facialis
- others (rare) bronchospasm, allergy, thrombocytopenia, gynecomastia

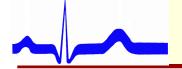
TREATMENT OF GC INTOXICATION

- at the beginning lowering of dose; at the advanced stage – agents withdrawal and usage of charcoal (50-100 gr) or cholestiramine (4-8 gr)
- K+ containing agents (panagin, "polarizing combination" – solution of KCI in 5 % glucose sol. with insulin and ascorbic acid)
- donators of SH-group (unithiol, acetylcystein)
- chelators (EDTA)
- anti-arrhythmics (lidocaine, phenytoin)
- ascorbic and panthotenic acid
- digibind (antibodies to foxgloves' medicines)

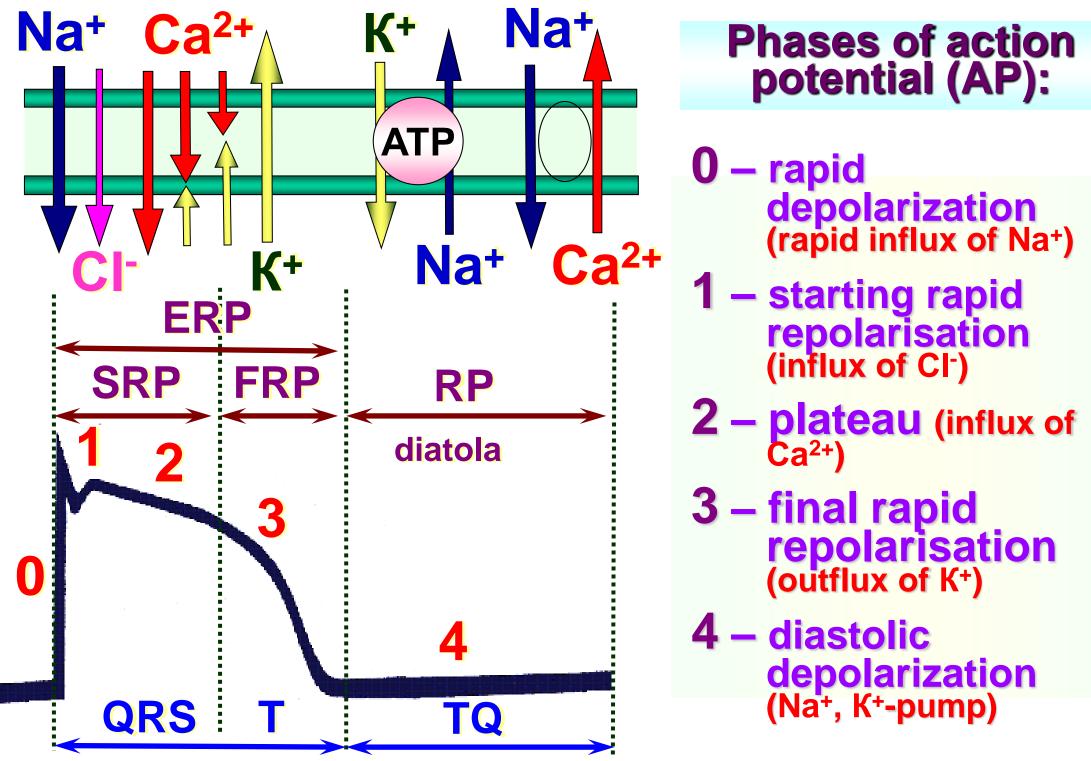
NON-GLYCOSIDE CARDIOTONICS

classfication


- adrenomimetics* dopamine, dobutamine etc.
- phosphodiesterase inhibitors* amrinone, milrinone
- calcium sensitizators* levosimendan
- metabolic agents glucagon, riboxin, glutamic acid etc.


*indications

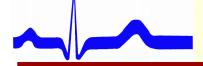
- cardiogenic shock (dopamine, dobutamine)
- advanced heart failure of III-IV classes that resistant to glycoside therapy (dobutamine, milrinone etc.)


ANTI-ARRHYTHMIC AGENTS

CARDIAC CONDUCTIVE SYSTEM

CARDIAC ELECTROPHYSIOLOGY

ARRHYTHMIAS –


- abnormal processes of depolarisation in myocardium: according to loci of impulse appearance (any non-sinus rhythm)
 their frequency (< or > 60-90 per min)
 regularity (incorrect)
 way of transmission

types:

tachyarrhythmia
bradyarrhythmia supra-ventricular
 ventricular

pathogenesis:

- upset of impulse generation automaticity of SA-node, pathologic automaticity (ectopic areas), early and late depolarisation
- Upset of conductivity simple physiologic refractiveness, it's prolongation, ↓ rest potential, fading impulse transmission, n re-entry phenomenon, disturbance of trans-cellular electrotonic interaction etc

ARRHYTHMIA

principles of pharmacotherapy:

ethiotropic – correction of:

- neurogenic and endocrinic disturbances (угнетающие ЦНС, антитиреоидные)
- inflammation of myocardium (NSAIDs, glucocorticoids)
- acute and chronic ischemia of myocardium (angioprotectors, coronarodilators etc.)

pathogenetic – removing of disturbances of:

- electrolyte balance in different phases of cardiac cycle and associated abnormalities of automaticity and excitability (membranestabilizing, Ca²⁺ and K⁺ channels blockers, potassium-containing agents)
- neural regulation of cardiac functioning (conductivity) – for tachyarrhythmias (betaadrenergic blockers), for bradyarrhythmias (Mcholinergic blockers, beta-adrenomimetics)

SITES OF ACTION OF ANTI-ARRHYTHMIC AGENTS

- I. Influence of heart:
 - I. refractive period ([↑] non-susceptibility)
 - automacity (↓ diastole, depolarisation, ↑ excitability threshold)
 - conductivity (↑ P-R, ↑ R-R)
 - ♦ excitability (↓)
 - ➡ contractility (↓)
- **II.** Influence on efferent innervation:
 - in tachyarrhythmia disturbances (↓ sympathetic and ↑ cholinergic innervations)
 - in bradyarrhythmia disturbances
 (cholinergic and sympathetic innervations)

DEMANDS FOR THE IDEAL ANTI-ARHYTHMICT AGENT

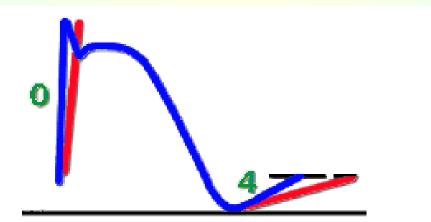
- effectiveness at different types of arrhythmia
- absence of negative impact on cardiac contractility and coronary blood flow (especially at myocardial infarction and heart failure)
- broad wideness of therapeutic action (!)
- possibility of long-lasting usage (for years)
- Iong-lasting anti-arrhythmic effect (at least 12-24 hrs)

CLASSIFICATION OF ANTI-ARRHYTHMICS

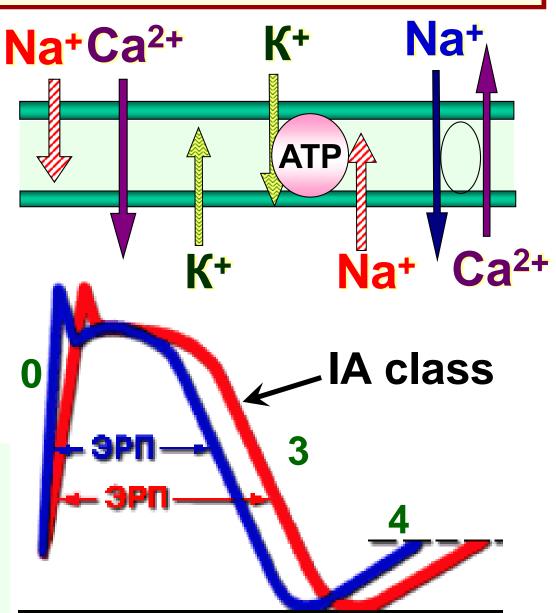
for tachyarrhythmias:

- ⇒ | class sodium channels blockers (membrane-stabilizing agnets):
 - A those that prolong effective refractive period (ERP): quinidine, novocainamide, disopyramide etc.
 - B those that shorten ERP: lidocaine, diphenin etc.
 - C those with different influence on ERP: propafenon, etacizin etc.
- \Rightarrow I class β -adrenoblockers: propranolol, atenolol, metoprolol etc.
- ⇒ III class potassium channels blockers: amiodarone, sotalol, ibutilide etc.
- ⇒ IV class calcium channels blockers: verapamil, halopamil, diltiazem
- ⇒ V class those that normalize electrolytes equilibrium: panangin, potassium chloride etc.

SODIUM CHANNELS BLOCKERS


(membrane-stabilizing)

- A quinidine, novocainamide, disopyramide etc.
- **B** lidocaine, diphenin etc.
- **C** propafenone, etazicin etc.


Subgroup	↓ speed of rapid depolarization	duration of action potential
ΙΑ	++	1
ΙB	+	\checkmark
ΙС	+++	-

IA SUBGROUP (quinidine-like)

✓ block Na⁺-channals and slow-down depolarization (phase 0 – excitability and 4 – automaticity)

 ✓ block K⁺ -channels and slow-down repolarisation (phase 3)
 ✓ ⇒ ↑ AP and ↑ ERP

Automaticity, excitability, and conductivity
Vagolytic action on SA and AV-nodes

IA SUBGROUP (quinidine-like)

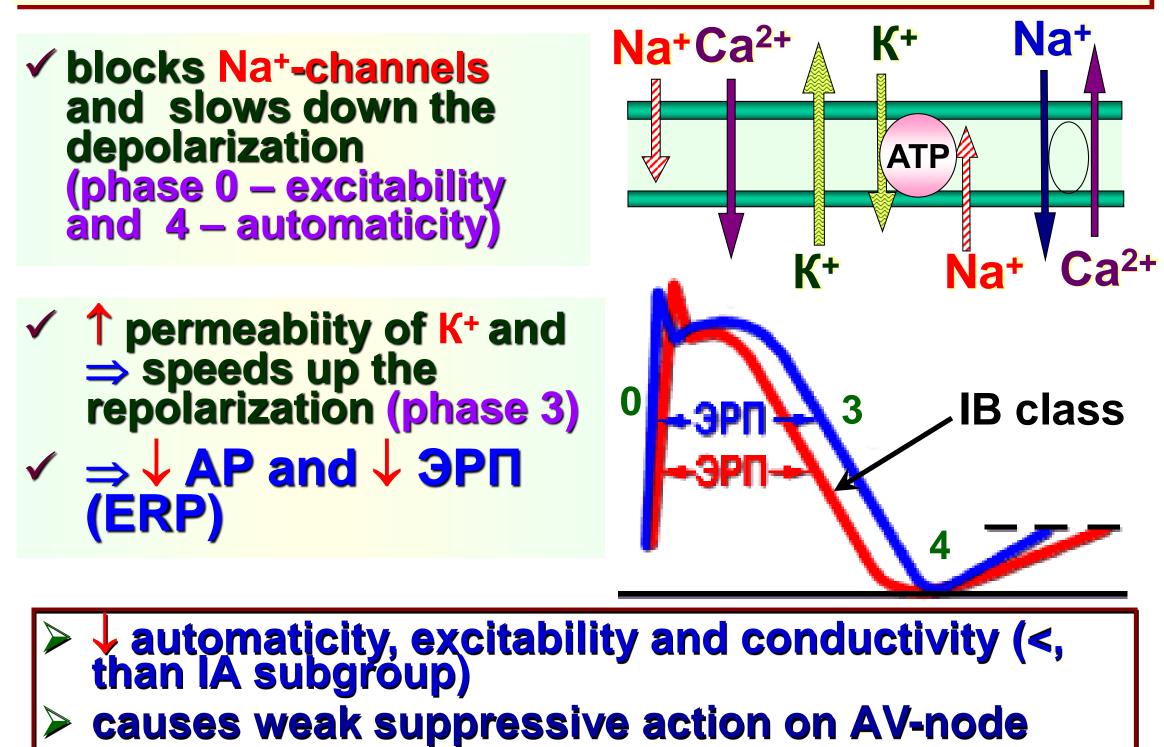
Quinidine

- on SA-node:
 automaticity,
 vagolytic effect
 insignificant tachycardia
- on AV-node: ↓ automaticity and conductivity, 1 vagolytic effect ⇒ in case of supraventricular tachyarrhythmia
- on Purkinje fibers:
 - automaticity and excitability in ventricular tachyarrhythmia
 - ↑ ERP ⇒ in tachyarrhythmia resulted from impulses circulated in closed chains
 - conductivity ⇒ in arrhythmias like reentry (transformation one-way block into complete block)

IA SUBGROUP

Quinidine

- **«-» inotropic action**
- peripheral vasodilation action) $(\alpha$ -adrenolytic
- BP (Update output and peripheral vascular resistance)


indications:

- atrial fibrillation
- supra-ventricular and ventricular paroxysmal tachycardia
- supra-ventricular and ventricular extrasystoles

adverse effects:

- contractility, J BP, AV-block
- hearing and visual disturbances, dyspepsia, allergic reactions etc.

IB SUBGROUP (lidocaine)

IB SUBGROUP

indications:

- ventricular extra-systoles, for example in myocardial infarction (lidocaine – 2 % sol. I.V. by drops, 10 % sol. I.M.; mexilethin – I.V., oral), cardioversion
- arrhythmia cause by cardiac glycosides (diphenin, lidocaine)

adverse effects:

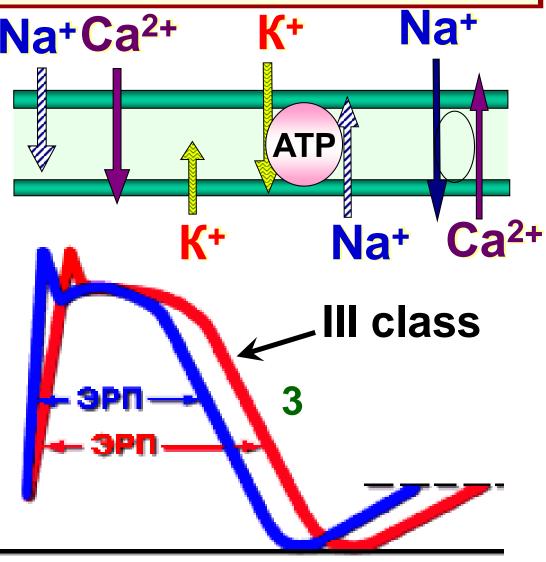
- arrhythmia (AV-block etc.)
- neurological (paresthesia, tremor, impairment of hearing, convulsions)

II class – BETA-ADRENOBLOCKERS

- * non-selective $(\beta_1 \neq \beta_2)$: propranolol (anaprilin), nadolol, timolol
- selective (B₁): metoprolol, atenolol, bisoprolol, acebutolol, celiprolol
- with intrinsic sympathomimetic activity: oxprenolol, pindolol

cardiac effects

- automaticity of SA-node
- automaticity of SA-node
 automaticity and conductivity of AV-node
 automaticity of Purkinje fibers
- » «-» ino- and chronotropic effects
- Solution of a straight of a


indications

- supra-ventricular tachyarrhythmia and extrasystoles
- ventricular extrasystoles caused by raising of automaticity

III class – POTASSIUM CHANNEL BLOCKERS (amiodarone)

- ✓ blocks K⁺-channels and ↓ Na⁺Ca²⁺
 ✓ ⇒ AP and ↑ ЭРП
 ✓ (ERP)
- ✓ blocks Na⁺- and Ca²⁺channels
 ✓ B-adropolytic offect
- β-adrenolytic effect

shares activity IA, II, and IV classes as well

«-» ino-, chronotropic effects
 ↓ AV-conductivity

III class – POTASSIUM CHANNEL **BLOCKERS** (amiodarone)

indications

- different types of tachyarrnythmias and extrasystoles, including those that are drugresistánt
- 🔶 angina pectoris, stenocardia

adverse effects

- arrhythmia (AV-block, bradycardia etc.), hypotension
- at long-lasting therapy (cumulate, T1/2 upto 100) days!):
 - fremor, ataxia, paresthesia
 - hypo- or hyperthyroidism

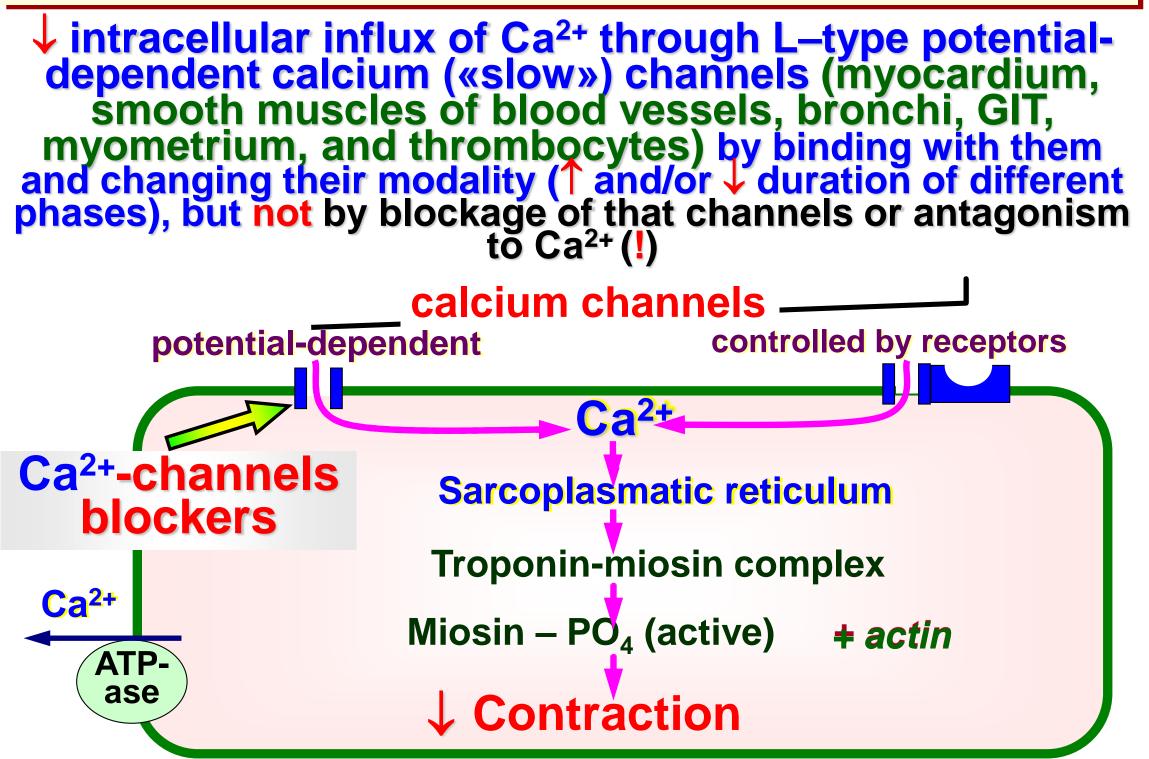
 - pulmonary fibrosis
 liver dysfunction, constipation
 - yellow-brownish precipitates in cornea, visual impairment
 - photodermatitis (grey-blue skin discolouration), photosensibilization etc.

IV class – CALCIUM CHANNEL BLOCKERS (CCB)

General characteristics

Calcium channels blockers (CCB) — are the agents that decrease the influx of calcium ions predominantly via L-type potential-dependent («slow») calcium channels

History of inventions


- **1961 y.** Dr. F. Dengel synthesized verapamil when he was trying to create synthetic analogues of papaverin
- **1967 Y.** A. Flekenstein unveiled the mechanism of its action and proposed the name «calcium antagonists»

1966 and 1971 yy. nifedipine and dilthiazem (correspondently) were got

CLASSIFICTION OF CALCIUM CHANNEL BLOCKERS

- I type cardio-tropic (phenylalkylamine derivatives): 1 generation verapamil, 2 generation hallopamil etc.
- Il type (vaso-tropic):
 - systemic action: dihydro-pyridine derivatives (DCCB): 1 generation – nifedipine, 2 generation – nifedipin-GITS, amlodipine, isradipine, nicardipine, nimodipine* etc.
 - cerebro-vaso-tropic –diphenyl-piperasine derivatives: 1 generation – cinnarisine, 2 generation – flunarisine as well as certain dihydro-pyridine derivatives* (nimodipine)
- Ill type mixed (benzothiazine derivatives): 1 generation – dilthiazem, 2 generation – clenthiazem

MECHANISM OF ACTION OF CCB

PHARMACODYNAMICS OF CCB

differ by:

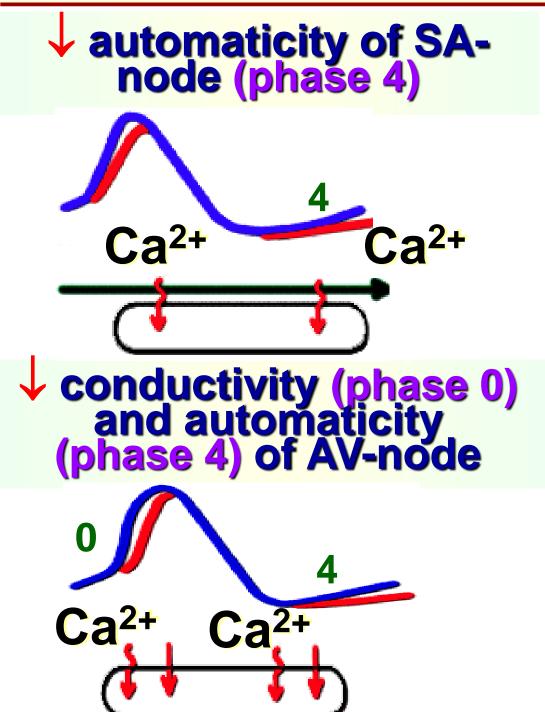
chemical structure
 sites of binding at calcium channels
 tissue specificity

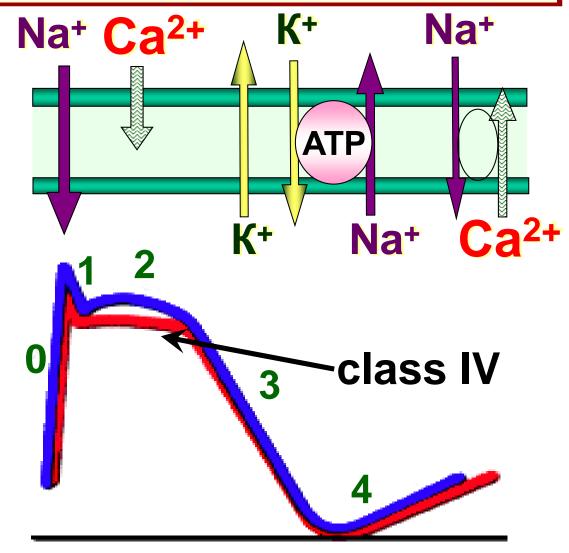
The selectivity of DCCB nifedipine and amlodipine concerning blood vessels 10 times, felodipine — 100 times, nisoldipine — 1000 times more comparatively to verapamil and dilthiazem, nimodipine has selectivity for cerebral vessels, nisoldipine for coronary vessels, felodipine — both for coronary and peripheral arteries

⇒ Difference in influencing on cardiovascular system:

- vasotropic (DCCB): prominant vasodilation, weak influence on contractility and absence of action on conductivity => hypo-tensive and anti-anginal actions
- Cardio-tropic (verapamil) and mixed (dilthiazem): Besignificant impact on contractility, conductivity, and automaticity of myocardium, moderate vasodilation ⇒ anti-anginal, anti-arrhythmic, and hyp-tensive actions

PHARMACODYNAMICS OF CCB


- blood vessels (basicely in DCCB) vasodilation (predominantly of vessels) ⇒
 - ↓ peripheral resistance ⇒ ↓ ABP ⇒ hypotensive action
 - peripheral resistance results in \downarrow cardiac after-load $\Rightarrow \downarrow O_2$ consumption of myocardium $+ \downarrow$ coronary spasm $\Rightarrow \uparrow$ coronary blood flow into ischemic zones $\Rightarrow \uparrow O_2$ supply of myocardium \Rightarrow anti-anginal action
 - ↓ cerebral vasoconstriction and consequences of brain stroke (nimodipine, cinnariциннаризин) ⇒ cerebro-protection


heart (verapamil, dilthiazem):

- «-» ino- and chronotropic effects, ↓ cardiac output ⇒
 ↓ O₂ consumption of myocardium ⇒ anti-anginal action
- SA-node automaticity, ↓ ectopic areas in atrium, AV-conductivity ⇒ «-» bathmo- and dromo-tropic effects ⇒ anti-arrhythmic action
- cardio-protective action ⇒ regress of left ventricular hypertrophy

IV class – CALCIUM CHANNELS BLOCKERS (verapamil, dilthiazem)

PHARMACODYNAMICS OF CCB

kidneys:

- vasoconstriction of renal vessels, 1 renal blood $flow \Rightarrow nephroprotective effect$
- rate of glomerular filtration + ↓ sodium reabsorption ⇒ diuretic effect (contribute into hypotensive effect)

smooth muscles of internal organs: relaxation \Rightarrow

- ↓ bronchospasm ⇒ broncholytic effect
 ↓ GIT tonus ⇒ spasmolytic effect
- \downarrow uterus tonus \Rightarrow tocolytic effect
- blood: ↓ platelets aggregation and thromboxane A₂ и ⇒ anti-aggregative action metabolism:

- ↓ development of atherosclerosis ⇒ anti-atherosclerosis action
- Ipids peroxydation, that prevent formation of free radicals

INDICATIONS FOR CCB

- supra-ventricular extra-systoles and tachyarrhythmia, atrial flutter and fibrillation (verapamil, dilthiazem)
- angina pectoris: efforts angina, vasospastic angina) (verapamil, dilthiazem, DCCB of II generation)
- arterial hypertension
- disturbance of cerebral blood flow, migraine (nimodipine, cinnarizin)
- impairment of peripheral blood flow, Reyno disease (amlodipine)
- in complex therapy of CNS disorders: Alzheimer disease, dementia, alcoholism, vestibulopathy (nimodipine)
- for prevention of cold air-caused bronchospasm

SITES OF ACTION OF ANTI-ARRHYTHMICS

Vagus

His

bundle

Purkin

fibres

SA

At supraventricular only:

verapamil cardiac glycosides

At ventricular only: *lidocaine diphenin*

At supraventricular and ventricular:

quinidinelike betaadrenoblockers

amiodarone