Odesa National Medical University Department of Basic and Clinical Pharmacology and Pharmacognosy

IMMUNOTROPICAND

ANTIALLENGE AGENTS

Types of hypersensitivity reaction

Immediate-type hypersensitivity

1.Anaphylaxis – results from cross-linking of membrane-bound IgE on blood basophils or tissue mast cells by antigen. This interaction causes cells to degranulate, releasing substances (histamine, leukotrienes)

Examples: hay fever, anaphylactic shock.

2.Cytotoxic reaction – results from the formation of antigen-antibody complexes between foreign antigen and immunoglobulins. It results in lysis of cells that keep antigen. Examples: blood transfusion reactions and in hemolytic disease of the newborn; aplastic anemia from chloramphenicol

Immediate-type hypersensitivity

3.Immune complex reaction – is due to the presence of elevated levels of antigen-antibody complexes. The formation of these complexes activates complement to produce components that increase vascular permeability and recruit neutrophils to the site of complex deposition.

Examples: skin rashes, serum sickness, glomerulonephritis.

Delayed-type hypersensitivity – is characterized by the influx of the activated macrophages and neutrophils; and release copious amounts of enzymes that contribute to the extensive tissue damage and local inflammation.

Examples: parasitic granuloma; tuberculin skin test.

Development of drugs hypersensitivity has three stages:

- conversion of drug's substance into form that can interact with proteins;
- conjugation of incomplete antigen with host protein that lead to formation of complete antigen;
- immune reaction of the organism on certain drugprotein complex that became alien.
 - !N.B. 71% of side effects of pharmacotherapy is the drugs hypersensitivity.

Peculiarity of allergic reactions:

- ✓ mismatch of drugs pharmacological properties and clinical manifestations of hypersensitivity;
- ✓ even minimal dose of a drug could cause any allergic reaction

ANTIALLERGIC AGENTS

- I. For the treatment of IMMEDIATE-TYPE reaction:
- synthesis and release of histamine and other active substances – cromolyn, ketotifen, glucocorticoids
- H₁-histaminoblockers dimedrole, diprazin, diazolin, loratidine etc.
- •agents that bind with histamine histag
- manifestations of hypersensitivity adrenomimetics, M-cholinoblockers, zafirlucast, euphylline
- tissue alteration steroid and non-steroid antiinflammatory agents

II. For the treatment of DELAYED-TYPE reaction

- immunosuppressant cyclosporine, azathioprine
- tissue alteration anti-inflammatory steroid and non-steroid, slowly-acting agents (chloroquine, gold-containing agents, dalson etc.)

HISTAMINE RECEPTORS

recept ors	localization	Effects of activation	blockers:	
H ₁	bronchial sm. muscles	↑ tonus		
	intestinal sm. muscles	↑ tonus	Dimedrol Diprazin	
	heart	↓ AV		
	vessels	↓ arteries, ↑ veins	Diprazin Diazolin etc.	
	capillary	1 permeability		
	nerve endings	1 pain perception and itching		
	CNS			
	gastric glands		Cimetidine, Famotidin etc.	
H ₂	heart	+ ino- and chrono-		
	arteries	↓ tonus		

H₁(HISTAMINE)-BLOCKERS

AGENTS	antihis onset		activity duration, hrs	sedativ e	M- cholino lytic	irritative
dimedrol	fast	++	3-5	++	++	+
diprazin	->>-	++++	6-8	+++	+++	+
suprastin	->>-	++	4-6	++	+	+
tavegil	->>-	+++	8-12	+	+	+
diazolin	slow	++	>24	-	•	+
fencarol	->>-	++	6-8	+	+	+
terfenadin	->>-	++	12-24	+	-	-
loratidin	->>-	++	24	+	-	-

Other H₁-blockers:

- ❖ Antiemetic (diprazin, dimedrol)
- Antiparkinsonic (diprazin, dimedrol)
- Alpha-adrenoblocking (diprazin)
- Local anesthetic (dimedrol)

Therapeutic uses:

- ✓ Allergic dermatitis, itching; allergic rhinitis; anaphylaxia
- ✓ Motion sickness prevention, hyposomnia

Adverse effects:

- > Sedation, drowsiness; rare excitation (in children)
- > Atropine-like effects
- > Local irritative action
- > Feto- and embriotoxicity
- > Potentiation of alcohol, neuroleptics action

Cromolyn sodium —inhibits mast cell release of histamine, leukotrienes.

Uses: bronchospasm prevention.

Ketotifen – acts like cromolyn and blocks H_1 -receptors.

Readily absorbed in GIT. $T_{1/2}$ =20 hours.

Uses: allergic bronchitis, hey fever, allergic dermatitis.

Adverse effects: drowsiness, thrombocytopenia.

Histaglobulin – is a preparation of the human γ -globulin. Increases the production of antihistamine antibodies.

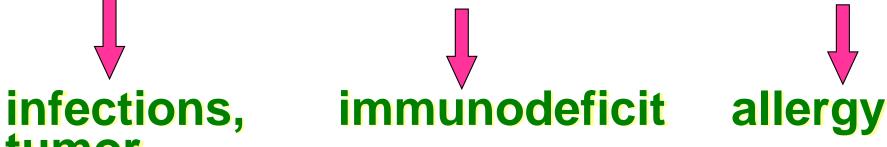
Uses: bronchial asthma, allergic dermatitis and different allergic disease.

PHARMACOTHERAPY OF ANAPHYLACTIC SHOCK:

- ✓ Adrenomimetics (adrenaline, ephedrine, noradrenaline, mesaton)
- ✓ Glucocorticoids (prednisolone, hydrocortisone, dexamethasone)
- ✓ H₁- blockers (diprazin, dimedrol, suprastin)
- ✓ Miotropic agents (euphylline)
- **✓** Analeptics (cordiamine, sulfocamphocaine)

IMMUNOPHARMACOLOGY -

types of immune correction:


specific & non-specific

CLASSIFICATION OF IMMUNO-SUPPRESSANT & CYTOTOXIC AGENTS

- antimetabolites: mercaptopurine, azathioprine, methotrexate, and ftoruracil
- alkylating agents: cyclophosphane, chlorbutine, sarcolysin, myelosan, etc
- antibiotics: cyclosporin A, actinomycin, dactinomycin, rubomycin, doxorubicin
- hormones and their antagonists: prednisolone, dexamethasone, phosphoestrol etc.
- antibodies: antilymphocytic globulin (ALG)
- **▶ NSAIDs:** butadion, indomethacin etc.
- miscellaneous: vincristin, vinblastin, asparaginase; chloroquine.

1. Alkylating agents

Mechanism of action: alkylations of DNA within the nucleus

Indications: leukemia, Hodgkin's disease, ovarian and breast cancer

2. Antimetabolites

Mechanism of action : analogs of physiologic metabolites. **Mercaptopurine** and **azathioprine** — analogs of purines; **methotrexate** — folic acid; ftoruracil — pyrimidines. Inhibit DNA and protein synthesis.

Indications: leukemia; intestinal cancer, breast and gastric cancer; organs transplantation; autoimmune diseases

3. Antibiotics

Mechanism of action: inhibit DNA synthesis. Also cyclosporin inhibits T-lymphocytes differentiation, caused antigen action.

Indications: breast, endometrial, and thyroid carcinoma; cancer of lungs and kidney; organs transplantation; autoimmune diseases

4. Periwinkle alkaloids (vincristin, vinblastin)

Mechanism of action: mitosis inhibition.

Indications: leukemia, Hodgkin's disease.

5. Enzymes (L-asparaginase)

Mechanism of action: splitting of L-asparagine.

Indications: lymphosarcoma, leukemia.

ADVERSE EFFECTS OF IMMUNOSUPPRESSANTS

initial:

- disturbance of bone marrow function
- disturbance of GIT function
- predisposition to infections
- allergic reactions

postponed:

- cancerogenic (cytotoxic agents)
- disturbance of reproductive system 70%) and teratogenic effect
- growth retardation in children
- others: hyperpigmentation, lungs fibrosis, hemorrhagic cystitis, alopecia; hepatotoxicity (antimetabolites)

CLASSIFICATION OF IMMUNOSTIMULATORS

group	agents
mainly stimulate nonspecific immunity	derivatives of purine and pyrimidine (methyluracil, pentoxyl)
mainly stimulate monocytes (macrophages)	sodium nucleinate, zymozan, vaccines (BCG), pyrogenal, prodigiosane
mainly stimulate T- lymphocytes	dibazol, thymalin, tactivin, vilozen, zinc agents, interleukines (IL-2)
mainly stimulate B-lymphocytes	myelopid, taficin, rigin, dalargin, amastin etc.
mainly stimulate NK and K-cells	interferons, filgrastim, molgramostim, placenta extract
others (plant origin, hormones, vitamins etc.)	adaptogens; vitamins C,E,A; anabolic steroids

- 1. Stimulators of nonspecific immunity methyluracil, pentoxyl.
- ✓ Effects: hasten cellular regeneration, wound closing; stimulate cellular and humoral immunity.
- ✓ Indications: mild leucopenia, badly closed wounds, burns, bone crash.
- ✓ Adverse effecs: usually well-tolerated.
- 2. Stimulators of macrophages and Tlymphocytes – sodium nucleate, BCG, pyrogenal.

Obtaining: sodium nucleate is obtained by hydrolysis of yeast; pyrogenal – microbial polysaccharide from Pseudomonas aeruginosa.

Therapeutic uses:

sodium nucleate – different diseases with leucopenia;

BCG – leukemia; carcinoma of breast, urinary bladder, intestine;

pyrogenal – chronic prostatitis, chronic inflammation of female reproductive system; inflammation and damage of peripheral and central nervous system.

3. Mostly stimulate NK & K-cells

Interferons possess antimicrobial, antiproliferative and anticancer activity.

There are three types of interferons:

- α-(leukocyte)
- β-(fibroblast)
- γ-(T-lymphocyte)Uses:
- Natural α-interferon are used locally for common cold, herpes keratitis.
- Recombinant α-interferon (reaferon, laferon) are used for hepatitis B & C; leukemia; carcinoma of urinary bladder and intestine.
- Recombinant β-interferon (betaferon) for multiple sclerosis.

Cytokines with colony-stimulating properties:

- > granulocyte colony-stimulating factor (filgrastim);
- > granulocyte-macrophage colony-stimulating factor (molgrastim).
- **Filgrastim** stimulates formation of granulocytes; **molgramostim** mixed granulocyte-macrophage colony. They hasten recovery from neutropenia in patients after chemotherapy and after bone marrow transplantation.
- **Poludan, amixin** stimulates the synthesis of endogenous interferon. Poludan is used locally for viral ophthalmic disease; amixin at hepatitis B & C.