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ODESSA – 2023
Topic 6. 2h Application of differential equations.
A differential equation that describes some process is often called a mathematical model of the process. It is noteworthy that even the simplest differential equations provide useful models of important processes.
We discuss several methods of simulation of processes by differential equations.
Typical example of partial differential equations is the wave equation
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Here,  α  is velocity. Note that the dependent variable  u  depends on the two independent variables x  and  t. 

Example of an ordinary differential equation is

[image: image2.emf] 

for the charge  Q(t)  on a capacitor in a circuit with capacitance  C, resistance  R, and 
inductance L.  E(t)  is the electromotive force (voltage) applied to the circuit..
A simple physical problem that leads to a nonlinear differential equation is the oscillating pendulum. The angle θ  that an oscillating pendulum of length L  makes with the vertical direction satisfies the equation
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The mathematical theory and methods for solving linear equations are highly developed. In contrast, for nonlinear equations the theory is more complicated, and methods of solution are less satisfactory. 
In view of this, it is fortunate that many significant problems lead to linear ordinary differential equations or can be approximated by linear equations. 
For example, for the pendulum, if the angle θ  is small, then  sinθ = θ  and this nonlinear differential equation can be approximated by the linear equation
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This process of approximating a nonlinear equation by a linear one is called linearization; it is an extremely valuable way to deal with nonlinear equations. 
Nevertheless, there are many physical phenomena that simply cannot be represented adequately by linear equations. To study these phenomena, it is essential to deal with nonlinear equations.

If there is a single function to be determined, then one equation is sufficient. However, if there are two or more unknown functions, then a system of equations is required. 

For example, the Lotka–Volterra, or predator–prey, equations are important in ecological modeling. They have the form

dx/dt = ax − bxy

dy/dt = −cy + dxy,

where  x(t)  and  y(t)  are the respective populations of the prey and predator species. The constants   a, b, c,  and  d  are based on empirical observations and depend on the particular species being studied. 

In some areas of application it is not unusual to encounter very large systems containing hundreds of equations.

If you find a function that you think may be a solution of a given equation, it is usually relatively easy to determine whether the function is actually a solution simply by
substituting the function into the equation.
A solution of a differential equation is a function that satisfies the differential equation. 
In general, solutions of differential equations contain one or more arbitrary constants of integration. 
· A particular solution of a differential equation is a function that satisfies the differential equation, but contains no arbitrary constants.

· The general solution of a differential equation is a solution from which every particular solution may be obtained by an appropriate choice of values for arbitrary constants.
The data used to determine the arbitrary constants in a general solution to determine a specific particular solution are called either the initial conditions or boundary conditions.

The distinction between initial conditions and boundary conditions is that:

· initial conditions all are specified at the same point in time (more precisely, for the same value of the independent variable);

· boundary conditions may be specified either at different times, or more commonly in the case where an independent variable represents a spatial dimension, specified at different points in space. 
Generally a problem comprised of a differential equation and initial conditions is called an initial value problem and a problem comprised of a differential equation and boundary values is called a boundary value problem.
Existence and Uniqueness of Solutions

Given a differential equation, the issue of whether it actually has a solution, and if it does, whether that solution is unique, is clearly of great importance. 
So, how can we tell whether some particular equation has a solution? This is the question of existence of a solution,and it is answered by theorems stating that under certain restrictions on the function  f, the equation always has solutions. 
This is not a purely mathematical concern for at least two reasons:
· If a problem has no solution, we would prefer to know that fact before investing time and effort in a vain attempt to solve the problem. 
· If a sensible problem is modeled mathematically as a differential equation, then the equation should have a solution. If it does not, then presumably there is something wrong with the formulation. So you has some check on the validity of the mathematical model.

If a given differential equation has at least one solution, then we may need to consider how many solutions it has, and what additional conditions must be specified to single out a particular solution.This is the question of uniqueness.

As in the question of existence of solutions, the issue of uniqueness has practical as well as theoretical implications. If we are fortunate enough to find a solution of a given problem, and if we know that the problem has a unique solution, then we can be sure that we have completely solved the problem. If there may be other solutions, then perhaps we should continue to search for them.

Computer Use in Differential Equations
 A computer can be an extremely valuable tool in the study of differential e quations. For many years computers have been used to execute numerical algorithms  to construct numerical approximations to solutions of differential equations. These algorithms have been refined to an extremely high level of generality and efficiency.

The usual output from a numerical algorithm is a table of numbers, listing selected values of the independent variable and the corresponding values of the dependent variable. 
With appropriate software it is easy to display the solution of a differential equation graphically, whether the solution has been obtained numerically or as the result of an analytical procedure of some kind. Such a graphical display is often much more illuminating and helpful in understanding and interpreting the solution of a differential equation than a table of numbers or a complicated analytical formula.

Our viewpoint is that you should  always try to use the best methods and tools available for each task. In particular, you should strive to combine numerical, graphical, and analytical methods so as to attain maximum understanding of the behavior of the solution and of the underlying process that the problem models.You should also remember that some tasks can best be done with pencil and paper, while others require a calculator or or computer. Good judgment is often needed in selecting an effective combination.
Examples
1. Electrical Circuit 

In order to use the techniques we have already learned, we assume the circuit that  has no capacitor present. Then the equation becomes 
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We solve equation when an initial current  I0 is flowing and a constant emf  E0 is impressed on the circuit at time  t = 0.

Solution.   We can separate variables to obtain
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We integrate and use the initial condition  I(0) = I0 to obtain
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hence
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So the current  I consists of a steady-state component  E0/R  and a transient component 
[image: image9.emf]
that approaches zero as  t → +∞. Consequently, Ohm’s Law  E0 = RI  is nearly true for t large.

We also note that if    I0 = 0,  then

[image: image10.emf]
if instead   E0 = 0 , then 
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2. Exponential Growth. 
Let  y = φ(t)  be the population of the given species at time  t.  

The simplest hypothesis concerning the variation of population is that the rate of change of  y  is proportional to the current value of  y; that is,

dy/dt = ry,

where the constant of proportionality  r is called the rate of growth or decline,depending on whether it is positive or negative. Here,we assume that  r > 0,  the population is growing.

Solving this equation subject to the initial condition    y(0) = y0, we obtain 
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Thus the mathematical model consisting of the initial value problem with  r > 0  predicts that the population will grow exponentially for all time. Under ideal conditions, this  equation has been observed to be reasonably accurate for many populations, at least for limited periods of time.

However, it is clear that such ideal conditions cannot continue indefinitely;eventually,

limitations on space, food supply, or other resources will reduce the growth rate and

bring an end to uninhibited exponential growth.

Practice

1. The half-life of a radioactive material is the time required for an amount of this 

material to decay  to one-half its original value. Show that for any radioactive material that decays according to the equation

dN /dt = −rN,

the half-life τ and the decay rate r satisfy the equation  τ = ln 2/r.

2. Consider a population  p of field mice that grows at a rate proportional to the current

population, so that 

dp/dt = rp.

Find  r if the population doubles in N days.

3. Consider an electric circuit containing a capacitor, resistor, and battery.

The charge Q(t) on the capacitor satisfies the equation
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Where  R  is the resistance, C is the capacitance, and  V  is the constant voltage supplied by

the battery.

If  Q(0) = 0, find  Q(t) at any time  t, and sketch the graph of  Q versus  t.
4.  According to Newton’s law of cooling, the temperature  u(t) of an object satisfies
 the differential equation
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where  T is the constant ambient temperature and  k is a positive constant. Suppose that

the initial temperature of the object is  u(0) = u0. Find the temperature  u(t) at any time  t.

