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ODESSA – 2023
10 Lecture ANOVA
The analysis of variance is often referred to by its acronym: ANOVA. What is analysis of variance? 

· ANOVA is a statistical method for determining the existence of differences among
several population means. 
· ANOVA is a joint test. The equality of several population means is tested jointly or
simultaneously.

The theory and computations of ANOVA
Three assumptions are required to use analysis of variance.

1. For each population, the response variable is normally distributed. 
2. The variance of the response variable, denoted  σ2, is the same for all of the populations. 
3. The observations must be independent. 
IAnalysis of variance can be used to test for the equality of   k population means μj for a completely randomized design. The general form of the hypotheses tested is

H0: μ1 = μ2 = … = μk
Ha: Not all population means are equal.
The null hypothesis  H0  states that there are no differences between the population means.

We draw independent random sample of size  nj  for each of the  k  populations or treatments: 
xij    i = 1, 2, 3, …,  nj      j = 1, 2, 3, …,  k.
For the resulting sample data, let
xij  -  value of observation  i  for treatment j, n = n1 + n2 +… + nk  - total number of observations, x - overall sample mean is the sum of all the observations divided by the total number of observations  n, s2 - overall sample variance, nj - number of observations for treatment j, xj - sample mean for treatment j, s2j  = sample variance for treatment j.
The formulas for the overall sample mean  x, the sample mean  xj  and sample variance  s2j  for treatment  j  are as follow:
[image: image15.png]         [image: image2.emf]         [image: image3.emf]
1. Calculation of the total sum of squares, SS.
With the entire data set as one sample, the formula for computing  the total sum of squares, SS, is

[image: image4.emf] [image: image5.emf].
2. Partitioning of total sum of squares, SS.
The analysis of variance can be viewed as the process of partitioning the total sum of squares,  SS  and the degrees of freedom   n – 1  into their sources: error and treatments:

[image: image6.emf]
SS             =               SST            +          SSE.
The total sum of squares, SS is partitioned into two sums of squares: the sum of squares due to treatments  SST  and the sum of squares due to error  SSE.
When SSE is partially expanded, we get

[image: image7.emf]
Dividing each component by  nj − 1, we obtain the sample variances  s2j. We can write
[image: image8.emf]              [image: image9.emf]  .   

The degrees of freedom corresponding to  SS,  n – 1, can be partitioned into the
degrees of freedom corresponding to SSE,  n – k, and the degrees of freedom corresponding
to  SST,  k – 1:
n – 1 =  (n – k) + (k – 1).
SSE  measures unexplained variation, the variation within each group that cannot be explained by possible differences between the groups.

SST  measures the variation of individual sample means  xj  from the overall sample mean  x.  It is that part of the variation that is possibly expected because the data points are drawn from different populations.  It’s the variation between groups of data points.
If the sample means  xj  are close to each other, then they all would be close to the overall sample mean  x; as a result,  SST would be small. It follows that a small value of   SST  supports the null hypothesis  H0.
3. Within-treatments estimate of population variance.
A within-treatments estimate of   σ2    is called the mean square due to error and is denoted MSE. The mean square for error is determined by dividing  SSE  by the total sample size  n  minus the number of treatments  k:
            [image: image10.emf]
The denominator of  MSE,  n – k  is referred to as the degrees of freedom associated with  SSE. 
4. Between-treatments estimate of population variance.
A between-treatments estimate of  σ2  is called the mean square due to treatments and is denoted MST.  The mean square for treatments is computed by dividing   SST   by the number of treatments  k  minus 1.
         [image: image11.emf].

The denominator, k – 1, represents the degrees of freedom associated with  SST.

5. Comparing the variance estimates: the  F test.
The ratio 
[image: image12.emf]
is the ratio of two sample variances. 

If the null hypothesis  H0   is true and the  ANOVA assumptions are valid, the 
sampling distribution of  the ratio  MST/MSE   is an  F distribution with numerator degrees of freedom equal to  k – 1  and denominator degrees of freedom equal to  n – k:

F(k – 1, n – k, 1– α).
So the ratio of MST/MSE can be used as an indicator of the equality or inequality of the  k  population means.
6. Rejection Rule.
If   F > F(k – 1, n – k, 1– α),  then reject  H0.
7. ANOVA table
 
The results of the preceding calculations can be displayed conveniently in a table referred to as the analysis of variance or ANOVA table.   
	ANOVA table

	Source of Variation
	Sum of Squares
	Degrees of Freedom
	Mean Square
	F

	Treatments
	SST
	k – 1
	MST
	MST/MSE

	Error
	SSE
	n – k
	MSE
	

	Total
	SS
	n – 1
	
	


Two-way analysis of variance
      1. The Two-Way ANOVA Model

There are  a  levels of factor A and  b  levels of factor B. Thus, there are  a ∙ b combinations of levels, or cells. Each one is considered a treatment. 
We  assume equal sample sizes  n  in all the cells. We will denote the total sample size by the symbol N. 
In the two-way ANOVA model, the assumptions of normal populations and equal variance for each two-factor combination treatment are still maintained.

The two-way ANOVA model is

xijk = μ + (i + βj + ((β)ij + ϵijk
where  μ  is the overall mean;  (i  is the effect of level  i (i = 1, . . . , a)  of factor A;

βj   is the effect of level   j (j = 1, . . . , b)  of factor  B;  ((β)ij  is the interaction effect

of levels  i  and  j; and   ϵijk   is the error associated with the  kth data point from level  i  of factor  A  and level  j  of factor  B.  

As before, we assume that the error  ϵijk  is normally distributed  with mean zero and variance  σ2  for all  i,  j,  and  k.
       2. The Hypothesis Tests in Two-Way ANOVA

a. Factor A main-effects test:

H0: (i = 0  for all i = 1, . . . , a;      Ha:  Not all (i  are 0.
This test will detect evidence of any factor  A  main effects. The null hypothesis is true if and only if there are no differences in means due to the different treatments of factor A.

b. Factor B main-effects test:

H0: βj = 0  for all  j = 1, . . . , b;      Ha:  Not all  βj  are 0.

This test will detect evidence of any factor  B  main effects. The null hypothesis is true if and only if there are no differences in means due to the different treatments of factor B.

c. Test for  AB  interactions:

H0: ((β)ij = 0  for all i = 1, . . . , a  and  j = 1, . . . , b;      Ha:  Not all  ((β)ij  are 0.
This is a test for the existence of interactions between levels of the two factors  A  and  B. The null hypothesis is true if and only if there are no two-way interactions between levels

of factor  A  and levels of factor  B,  that is, if the factor effects are additive.

In carrying out a two-way ANOVA, we should test the third hypothesis first. We do

so because it is important to first determine whether interactions exist. 
3. Sums of Squares, Degrees of Freedom, and Mean Squares

We define the data, the various means, and the deviations from the means as follows.

xijk  is the kth data point from level i of factor A and level j of factor B, xij   is the mean of cell ij,  xi   is the mean of all data points in level i of factor  A,  xj   is the mean of all data points in level j of factor  B,  x    is the grand mean.

Using these definitions, we have
∑∑∑(xijk - x)2 = ∑∑∑ (xij - x)2 + ∑∑∑ (xijk - xij )2
SS            =         SST           +          SSE

It is the usual decomposition of the sum of squares  SS, where each cell (a combination of a level of factor A and a level of factor B) is considered a separate treatment. 
The interesting thing is that  SST can be further partitioned into a component due to factor A (SSA), a component due to factor B (SSB), and a component due to interactions of the two factors (SS(AB)): 
∑∑∑ (xij – x)2  = ∑∑∑ (xi – x)2  +  ∑∑∑ (xj – x)2  +  ∑∑∑ (xij – xi – xj + x)2
SST          =       SSA           +           SSB        +                  SS(AB).
The important thing to understand is that the total sum of squares is partitioned into a part due to factor A, a part due to factor B, a part due to interactions of the two factors,

and a part due to error:
SS    =   SSA   +    SSB    +    SS(AB)    +    SSE.
4. The F Ratios and the Two-Way ANOVA Table

Let us now construct an ANOVA table. 
	ANOVA table

	Source of Variation
	Sum of Squares
	Degrees of Freedom
	Mean Square
	F Ratio

	Factor A
	SSA
	a – 1
	MSA =     SSA/(a – 1)
	MSA/MSE

	Factor B
	SSB
	b – 1
	MSB =   SSB/(b – 1)
	MSB/MSE

	Interaction
	SS(AB)
	(a –1)(b –1)
	MS(AB) = [image: image13.emf]
	MS(AB)/MSE

	Error
	SSE
	ab(n – 1)
	MSE = SSE/ab(n –1)
	

	Total
	SS
	abn – 1
	
	


The  F ratio for each one of the hypothesis tests is the ratio of the appropriate mean

square to the MSE:

· for the test of factor  A  main effects, we use   F = MSA/MSE; 
· for the test of factor  B  main effects, we use   F = MSB/MSE; 
· for the test of interactions of  the two factors, we use   F = MS(AB)/MSE. 

The degrees of freedom associated with each  F ratio are the degrees of freedom

of the respective numerator and denominator (the denominator is the same for all

three tests  ab(n – 1)). 
For the testing of factor A main effects, our test statistic is the first  F ratio. 
When the null hypothesis is true (there are no factor  A  main effects), the ratio 
F = MSA/MSE  follows an   F distribution with  a – 1 degrees of freedom for the numerator and  ab(n – 1)  degrees of freedom for the denominator. We denote this distribution by F[a –1, ab(n – 1)].
Similarly, for the test of factor B main effects, when the null hypothesis is true, the distribution of the test statistic is F[b –1, ab(n – 1)].
The test for the existence of  AB  interactions uses  F[(a – 1)(b – 1), ab(n – 1)].
5. The Overall Significance Level

In two-way ANOVA there is a family of three tests, each carried out at a given level of significance. 
Here the question arises: What is the level of significance of the set of three tests? A

bound on the probability of making at least one type I error in the three tests is given  by Kimball’s inequality. 
If the hypothesis test for factor A main effects is carried out at α1, the hypothesis test for factor B main effects is carried out at α2, and the hypothesis test for interactions is carried out at α3, then the level of significance α of the three tests together is bounded from above as follows (Kimball’s Inequality)
α  ≤   1 – (1 – α1)(1 – α2)(1 – α3).

Extension of ANOVA to Three Factors

The extension of two-way analysis to this method is straightforward.

To carry out a three-way ANOVA, we assume that in addition to  a  levels of factor A
and  b  levels of factor  B, there are  c  levels of factor  C. 
Three pairwise interactions of factors and one triple interaction of factors are possible. These are denoted AB, BC, AC, and ABC. 

Three-factor interactions  ABC  imply that at least some of the twofactor interactions AB, BC, and AC are dependent on the level of the third factor.[image: image14.emf]
