ODESSA NATIONAL MEDICAL UNIVERSITY

Department of Biophysics, Informatics and Medical Devices
Information

for

First year students

Taking the course of

Biological physics with physical methods of analysis
Specialty: 226 «Pharmacy, industrial pharmacy» 

Lecture  1   
Mechanical oscillations
Composed by: 

As. Prof. P.G. Zhumatii

                                                                                 Approved

                 at the methodical meeting of the Department

                 "29" _August_ 2023,    Protocol No. _1_[image: image1.emf]
                    Head of Department, Prof. 

Godlevsky L.S.

               

ODESSA – 2023
Mechanical oscillations

Periodic motion is motion of an object that regularly repeats—the object returns to a given position after a fixed time interval T (period). 
A special kind of periodic motion occurs in mechanical systems when the force acting on an object is proportional to the position of the object relative to some equilibrium position. If this force is always directed toward the equilibrium position, the motion is called simple harmonic motion, which is the primary focus of this lecture.
Simple Harmonic Motion
As a model for simple harmonic motion, consider a block of mass  m  attached to the end of a spring, with the block free to move on a frictionless, horizontal surface. 
When the spring is neither stretched nor compressed, the block is at rest at the position called the equilibrium position of the system, which we identify as  x = 0. We know from experience that such a system oscillates back and forth if disturbed from its equilibrium position.

We can understand the oscillating motion of the block qualitatively by first recalling that when the block is displaced to a position  x, the spring exerts on the block a force that is proportional to the position and given by Hooke’s law:

Fs  =  ‒ kx. 
We call  Fs  a restoring force because it is always directed toward the equilibrium position and therefore opposite the displacement  x of the block from equilibrium. 
That is, when the block is displaced to the right of  x = 0, the position is positive and the restoring force is directed to the left. When the block is displaced to the left of  x = 0, the position is negative and the restoring force is directed to the right.

When the block is displaced from the equilibrium point and released, it is a particle under a net force and consequently undergoes an acceleration. Applying Newton’s second law
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to the motion of the block, providing the net force in the  x  direction, we obtain

‒ kx = ma    or    a = ‒ (k/m)x.          (1)
That is, the acceleration a  of the block is proportional to its displacement  x, and the direction of the acceleration is opposite the direction of the displacement of the block from equilibrium. 
Systems that behave in this way are said to exhibit simple harmonic motion. An object moves with simple harmonic motion whenever its acceleration is proportional to its position and is oppositely directed to the displacement from equilibrium.

If the block is displaced to a position  x  and released from rest, its initial acceleration is ‒ kA/m. When the block passes through the equilibrium position  x = 0, its acceleration is zero. At this instant, its speed is a maximum because the acceleration changes sign. 
The block then continues to travel to the left of equilibrium with a positive acceleration and finally reaches  x = ‒ A, at which time its acceleration is +kA/m and its speed is again zero. The block completes a full cycle of its motion by returning to the original position, again passing through x = 0 with maximum speed. Therefore, the block oscillates between the turning points  x = ±A. 
In the absence of friction, this idealized motion will continue forever because the force exerted by the spring is conservative. Real systems are generally subject to friction, so they do not oscillate forever. 

The motion described above occurs so often that we identify the particle in simple harmonic motion model to represent such situations. To develop a mathematical representation for this model, we recall that, by definition, 
a = dv/dt = d2x/dt 2.
If we denote the ratio  k/m  with the symbol   ω02 , then we can express equation (1) as
d2x/dt 2 + ω02x  = 0.                                                   (2)

The following cosine function is a solution to the differential equation:

x(t) = A cos (ω0t + ),                                                  (3)
where A, ω0, and  are constants of the motion. 
First,  A, called the amplitude of the motion, is simply the maximum value of the displacement of the particle from equilibrium in either the positive or negative  x  direction. 
The constant  ω0  is called the angular frequency, and it has units of radians per second.  It is a measure of how rapidly the oscillations are occurring; the more oscillations per unit time, the higher the value of  ω0. 
The constant angle    is called the epoch or initial phase and, along with the amplitude  A, is determined uniquely by the position  x0  and velocity v0  of the particle at  t = 0.
The quantity  (ω0t + )  is called the phase of the motion. Notice that the function  x(t)  is periodic and its value is the same each time  ω0t  increases by  2π  radians.

Equations (1), (2), and (3) form the basis of the mathematical representation of the particle in simple harmonic motion model:

· If you find that the force on an object is of the mathematical form of (1), you know the
motion is that of a simple harmonic oscillator and the position of the particle is described by (3). 
· If you find that it is described by a differential equation of the form of (2), the motion is that
of a simple harmonic oscillator. 
· If you analyze a situation and find that the position of a particle is described by (3), you
know the particle undergoes simple harmonic motion.

The period  T  of the motion is the time interval required for the particle to go through one full cycle of its motion. That is, the values of  x  and  v  for the particle at time  t  equal the values of x  and  v  at time  t + T. Because the phase increases by  2π  radians in a time interval of  T,

(ω0(t + T) + ) ‒ (ω0t + ) = 2π.  
Simplifying this expression gives  ω0T = 2π, or

T = 2π/ω0,              ω0 = 2π/T                                                        (4)
The inverse of the period  T  is called the frequency  f  of the motion. Whereas the period is the time interval per oscillation, the frequency represents the number of oscillations the particle undergoes per unit time interval:

f = 1/T.                                                                                 (5)
The units of   f  are cycles per second, or hertz (Hz). 
The period and frequency depend only on the mass of the particle m and the force constant k of the spring and not on the parameters of the motion, such as  A  or  . As we might expect, the frequency is larger for a stiffer spring (larger value of  k) and decreases with increasing mass of the particle.

We can obtain the velocity and acceleration of a particle undergoing simple harmonic motion from (3):

v = dx/dt = ‒ ω0A sin (ω0t + )                                                  (6)
a = d 2x/dt 2 = ‒ ω02A cos (ω0t + )                                            (7)
Because  ω02 = k/m, we can use (6) to express the kinetic energy of a particle undergoing simple harmonic motion as
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                                        (8)
The elastic potential energy stored in the spring for any elongation x is given by  ½ kx2. 
Using (3) gives
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                                           (9)

We see that  K  and  U  are always positive quantities or  zero. We can express the total mechanical energy of the simple harmonic oscillator as

E = K + U 
From the identity   sin2α + cos2α = 1, we see this equation reduces to
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.                                                            (10)
That is, the total mechanical energy of a simple harmonic oscillator is a constant of the motion and is proportional to the square of the amplitude  A. 
The total mechanical energy is equal to the maximum potential energy stored in the spring when   x = ± A, because  v = 0  at these points and there is no kinetic energy. 
At the equilibrium position, where  U = 0  because  x = 0, the total energy, all in the form of kinetic energy, is again  ½ kA2.

You may wonder why we are spending so much time studying simple harmonic oscillators. 
The study of simple harmonic motion is important for two reasons:
· There are a great many physical problem in mechanics, acoustic, optics, electricity and in
atomic and molecular physics, in which the force on a system is approximately proportional to its displacement from some equilibrium position. In such cases the resulting motion may be represented approximately be the simple harmonic model.

· Even the complicated periodic motion occurring in physical problem can be represented as a
combination of a number of simple harmonic motion having frequencies which are multiple of that of the complicated motion. The vibrating strings and membranes, the vibrations of atoms in solid, the electrical and acoustical oscillations in a cavity can be treated in this manner.
Composition of two simple harmonic motions of equal frequencies in a straight line

If two simple harmonic motions are acting on a particle simultaneously, it shall perform

resultant vibration, which is obtained by compounding the component vibrations. 

Let two simple harmonic motions of equal frequencies  ω  but of different amplitudes and phases be simultaneously acted on a particle in the same straight line. Let the two component vibrations be represented by

x1 = a1 cos (ωt + φ1)      and      x2 = a2 cos (ωt + φ2)
where  a1  and  a2  are the amplitudes and  φ1  and  φ2  the epochs or initial phases of the

component vibrations. The phase difference between them is (φ1  –  φ2). The resultant

displacement from the principle of superposition, is given by

x = x1 + x2.
Let it be represented by

x = a cos (ωt + θ),
where  a  is the amplitude and  θ  the epoch of the resultant vibrations. The above relation shows that the resultant motion is simple harmonic of the same frequency ω  but of different amplitude a and epoch θ. 
Using trigonometry, we get,

a2 = (a1)2 + (a2)2 + 2 a1 a2 cos (φ1 – φ2),
[image: image5.emf] .
Composition of two rectangular simple harmonic motions of equal frequencies
When a particle is vibrating, simultaneously under two simple harmonic motions at right angles to each other, the resultant motion of the particle is called Lissajous figures. The nature of the motion, or the curve traced out, depends upon the amplitudes, frequencies and the phase difference of the two component motions. 
We shall consider some simple cases of the composition of two rectangular vibrations.

Let the two simple harmonic motions of equal frequencies be along the axis of  X and axis of  Y. 
They can be represented by

x = a sin (ωt + φ)    y = b sin ωt
where  a  and  b  are the amplitudes of the component vibrations having each frequency ω  and

the first vibration is ahead of the second by a phase angle  φ, i.e., the phase difference between

the two vibrations is  φ.

The resultant motion can be obtained by eliminating  t  from these equations. Expanding

x = a sin (ωt + φ), we have
x/a = sin (ωt + φ) = sin ωt cos φ+ cos ωt sin φ,

but  
[image: image6.emf]

Substituting, we get

[image: image7.emf],        [image: image8.emf],
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This expression represents the resultant motion, which is in general an ellipse inclined to the axes of co-ordinates. There are, however, a number of special cases:
[image: image10.emf]  [image: image11.emf]  [image: image12.emf]

(a) When  φ = 0 , the expression, becomes

[image: image13.emf],              [image: image14.emf].        
This represent a straight line  y = bx/a, passing through the origin and lying in the first and third quadrants (Fig. a)
(b) When  φ = π/2, the expression is

[image: image15.emf].

This equation represents an ellipse, whose axes are coincident with the co-ordinate axes (Fig. b).

Now, if  a = b, the ellipse degenerates in the circle:
[image: image16.emf].
Hence, two simple harmonic motions at right angles to each other of equal amplitudes but with phase, differing by  π/2, are equivalent to a uniform circular motion, the radius of the circle being equal to the amplitude of either simple harmonic motion.

(c) When  φ = π, expression is

[image: image17.emf],
which represents a straight line  y = - bx/a, passing through the origin and lying in the second and fourth quadrats (Fig. c).

For any other values of φ, except discusses above, the path will be an ellipse, inclined to the co-ordinate axes.

Damped Oscillations

The oscillatory motions we have considered so far have been for ideal systems, that is, systems that oscillate indefinitely under the action of only one force, a linear restoring force. 
In many real systems, nonconservative forces such as friction or air resistance retard the motion. The frictional force, acting on a body opposite to the direction of its motion, is called

damping force. Such a force reduces the velocity and the kinetic energy of the moving body

and so it is also called a retarding or dissipative force. 
These forces usually arise due to the viscosity or friction of the medium and are non-conservative in nature. When the velocities are not sufficiently high, the damping force is found to be proportional to the velocity (v) of the particle and may be expressed as

F = – γv = – γ (dx/dt),
where  γ  is a positive constant, called the damping coefficient.
With this damping force,  F, we can write the differential equation describing damped harmonic motion: 
[image: image18.emf],             [image: image19.emf]   ,                                              
where  2k = γ /m = 1/τ  and  ω02 = C/m  represents the angular frequency in the absence of a retarding force (the undamped oscillator) and is called the natural frequency of the system. This  τ  is the relaxation time and  k  is called damping constant.

Now, we have to solve equation of damped harmonic motion. Let its possible solution

be  x = Aeat . Substituting the values of  x,  dx/dt  and  d2x/dt2, we have
[image: image20.emf],             [image: image21.emf].
The general solution of this differential equation is

[image: image22.emf].                                 (13)
where  A1  and  A2  are constants, depending upon the initial conditions of motion.

The quantity 
[image: image23.emf]
is imaginary, real or zero, it depends on the relative values of  k  and  ω0. 
1.Underdamped Case: If the damping is so low that   k < ω0, then
[image: image24.emf].

This equation represents a damped harmonic motion. This motion is oscillatory whose periodic time is given by

[image: image25.emf]
Thus, the effect of damping is to increase the periodic time. But in actual cases, the effect of damping on periodic time is usually negligible except few extreme cases.

The amplitude of the oscillatory motion is given by
[image: image26.emf].

Where  A0  is the amplitude in the absence of damping. In the presence of damping, the amplitude decreases exponentially with time. 

[image: image27.emf]
In figure, time displacement curve is shown for damped harmonic motion. As the maximum value of sin (ωt + φ)  is alternately  +1 and  –1, obviously the time displacement curve of the vibrating body lies entirely between the curves  A = A0e–kt  and  A = – A0e–kt shown by the dotted lines which define the envelope of the oscillatory curve.
Thus when the retarding force is small, the oscillatory character of the motion is preserved but the amplitude decreases exponentially in time, with the result that the motion ultimately becomes undetectable. Any system that behaves in this way is known as a damped oscillator.
The time interval between the successive maximum displacements (i.e., amplitudes) of

left and right hand sides is T/2, hence if  An  and  An+1  are the successive amplitudes, then

[image: image28.emf],

[image: image29.emf]
where  d  is called the decrement, indicating for the reduction in amplitude.

[image: image30.emf].

This quantity  λ  is called the logarithmic decrement and is equal to the natural logarith of the ratio of two successive amplitudes of vibration.
2.Critically Damped Case: As the value of  k  increases, the amplitude of the oscillations decreases more and more rapidly. When  k  reaches a critical value  kc  such that   k = ω0, then we have
[image: image31.emf].
In this case, the system, once released from rest at some nonequilibrium position, approaches but does not pass through the equilibrium position. 
3. Overdamped Case: If the damping is so high that  k > ω0, we have

[image: image32.emf]
As  k > β, both quantities of right hand side decrease exponentially with time and the motion is non-oscillatory. Such a motion is called dead beat or aperiodic.
Again, the displaced system, when free to move, does not oscillate but rather simply returns to its equilibrium position.
[image: image33.emf]
As the damping increases, the time interval required for the system to approach equilibrium also increases. 
Graphs of position versus time for:

(a) an underdamped oscillator, 
(b) a critically damped oscillator, and 
(c) an overdamped oscillator.
Damping is quite frequently introduced to systems that would otherwise oscillate in undesirable ways. Automobile shock absorbers are present for just this.

To represent the efficiency of an oscillating system in a term known as quality factors
Q, is widely used. The quality factor Q of an oscillating system is a measure of damping, or the rate of energy decay, of the system. 
The quality factor  Q  is defined as  2π  times the ratio of the energy stored in the system to the energy lost per period. That is 

[image: image34.emf]
In the limit of zero damping, the oscillator experiences no energy loss, and  Q → ∞. 
Thus, the energy loss, ΔE, over one complete oscillation period,  T  is

[image: image35.emf].
In the limit of small damping, the quality of the oscillator,  Q, can be approximated by 
Q = ω0τ.
Because  Q  is proportional to  τ,  it too measures the amount of damping. The less the damping, the larger are the values of  τ  and  Q. 

Forced Oscillations

The mechanical energy of a damped oscillator decreases in time as a result of the resistive force. It is possible to compensate for this energy decrease by applying an external force that does positive work on the system. 
Let us consider system oscillating about an equilibrium position under and external

periodic force. Let  x  be its displacement from the equilibrium position at an instant during

the oscillation. Its instantaneous velocity is  dx/dt. 
The forces acting upon the system at the instant are:

· A restoring force proportional to the displacement but acting in the opposite direction, this
may be written as   – Cx, where  C  is the force constant.

· A frictional force proportional to the velocity but acting in the opposite direction.

This may be written as  − γ dx/dt. 
· An external periodic force represented by  F0 sin pt, where  F0  is the maximum value of
this force and   p  is its angular frequency. In general, the frequency  p  of the driving force is different from the natural frequency  ω0 of the oscillator.
Thus the total force F acting upon system is

F = − Cx − γ dx/dt + F0 sin pt .

 
By Newton’s second law this must be equal to the product of the mass  m  of the system

and the instantaneous acceleration  d2x/dt2 .  That is
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where   2k = γ /m,
[image: image38.emf],    [image: image39.emf].
When a periodic force acts on a body, it delivers periodic impulses to the body so that the loss of energy in doing work against the dissipative forces is recovered. The result of this is that the body is thrown into continuous vibrations. 
In the initial stages the body tends to vibrate with its natural frequency whilst the impressed force tries to impose its own frequency upon it. But soon the free vibrations of the body die out and ultimately the body vibrates with a constant amplitude and with the same frequency as that of the impressed force. 
Such vibrations of constant amplitude, performed by a body under the influence of a impressed periodic force, with a frequency equal to that of the force, are known as forced vibrations and the oscillating system is itself called driven or forced harmonic oscillator. 
The impressed periodic force is called the driver and the body, executing forced oscillations, is called the driven.
After the driving force on an initially stationary object begins to act, the amplitude of the oscillation will increase. After a sufficiently long time interval, when the energy input per cycle from the driving force equals the amount of mechanical energy transformed to internal energy for each cycle, a steady-state condition is reached in which the oscillations proceed with constant amplitude. 
In this case, equation has the solution

x(t) = A sin (pt − θ)
where

[image: image40.emf],          [image: image41.emf].
The amplitude of the forced oscillator is constant for a given driving force because it is being driven in steady state by an external force. 
Here, we will assume that the damping is low. Now we will consider the different cases,

when  ω0 >> p, ω0 = p and ω0<< p.

1. For low driving frequency, i.e., when  ω0 >> p,  tan θ → 0 or θ → 0, that is, the driving

force and the displacement are in the same phase. Hence the amplitude of the oscillation

is given by
[image: image42.emf].
Thus, in this case the response (amplitude) does not depend on the mass of the oscillating

system or damping, but it depends only on the force constant  C.

2. For very high driving frequency i.e., when  ω0<< p, if the driving frequency is increased,

the value of the amplitude  A decreases:
[image: image43.emf],
which shows that the amplitude, which now depends upon the mass  m, continuously decreases as the driving frequency  p  is further increased.
3. The amplitude of the forced oscillations depends upon  (ω02 − p2)2 which in turn depends
upon the difference between the driving frequency p and the natural frequency ω0 of the oscillator. Smaller this difference, larger the amplitude.
Hence for a certain value of driven frequency  p = pr  the amplitude of the oscillating

system is maximum:

[image: image44.emf],   [image: image45.emf]
This phenomenon in which the amplitude of the driven oscillator becomes maximum at a particular driven frequency, is called amplitude resonance and this frequency is known as the resonant frequency.

If the damping is low, then  pr ≈ ω0  and the amplitude

[image: image46.emf] .

Hence in the case of zero damping the amplitude should be infinity. 
But it is not possible because the friction on the oscillating system is never zero. 
If the damping is low, then the ratio of the response at resonance to the response at zero driven frequency is given by 
[image: image47.emf] .

Hence at resonance, this ratio is equal to the quality factor  Q  of the system. Thus, we

see that the damping controls the response of resonance.

When  p = ω0, we have

tan θ = ∞  or  θ = π/2

[image: image48.emf] ,
which is less than the amplitude  Amax .

[image: image49.emf]
The variation of the amplitude A with the frequency p is shown in figure. Initially, when the angular frequency p of the force is increased the amplitude A continuously increases and at a certain value of p, the value of the amplitude becomes maximum. This is the condition of amplitude resonance. Now, on further increasing p, the response decreases gradually. 
When the damping is greater, the resonant frequency  pr  is less than  ω0  but in case of low damping the resonant frequency of the force is nearly equal to ω0 of the oscillator. It is also clear from these curves that for low damping the

height of the peaks become greater and when the damping is zero Amax rises to infinity.

In above figure, for different values of damping curves have been drawn between the driven frequency and the amplitude. 
The term sharpness of resonance refers to the rate of fall in amplitude with the change of forcing frequency on each side of the resonant frequency. 
When the damping is low, the response (amplitude) falls of very rapidly on other side of resonant frequency and we say that the resonance is sharp. 
On the other hand, for high damping the response falls off very slowly on either side of resonant frequency and the resonance is said to be flat. 
Thus, the resonance is flat or sharp according to the damping for the oscillating system is large or small. 
If  ph  is the value of angular frequency when the amplitude falls to half the value at resonance, then the change in  p  is called the half width of the resonance curve i.e.,

Half width     Δp = | ph – pr | = 3½k
Thus the sharpness  Δp  of the resonance peak is a direct measure of the damping coefficient,  γ, divided by  m. 
The smaller the damping, the sharper the resonance peak.
Resonance appears in many areas of physics. For example, certain electric circuits have resonance frequencies. This fact is exploited in radio tuners, which allow you to select the station you wish to hear. 
Vibrating strings and columns of air also have resonance frequencies, which allow them to be used for musical instruments.

Resonance in Structures

We investigated the phenomenon of resonance in which an oscillating system exhibits its maximum response to a periodic driving force when the frequency of the driving force matches the oscillator’s natural frequency. 
We now apply this understanding to the interaction between the shaking of the ground during an earthquake and structures attached to the ground. The structure is the oscillator. It has a set of natural frequencies, determined by its stiffness, its mass, and the details of its construction. The periodic driving force is supplied by the shaking of the ground.

A disastrous result can occur if a natural frequency of the building matches a frequency contained in the ground shaking. In this case, the resonance vibrations of the building can build to a very large amplitude, large enough to damage or destroy the building. 
This result can be avoided in two ways:

· The first involves designing the structure so that natural frequencies of the building lie
outside the range of earthquake frequencies. (A typical range of earthquake frequencies is 0–15 Hz.) Such a building can be designed by varying its size or mass structure. 
· The second method involves incorporating sufficient damping in the building. This method
may not change the resonance frequency significantly, but it will lower the response to the natural frequency. It will also flatten the resonance curve, so the building will respond to a wide range of frequencies but with small amplitude at any given frequency.
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