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Fundamentals of rheology, hydro and hemodynamics
Basic concepts 

Mechanics, as a scientific discipline, is the study of the behavior of bodies subject to forces and displacements. A body, for the purpose of mechanics, is a portion of matter that, at a given moment in time, occupies a certain region in space.
Our goal is to characterize the mechanical behavior of body by using basic models that are routinely used in mechanics of materials. We will begin by defining some of the basic concepts of mechanics.

A body is said to undergo a displacement when some or all of its particles are moved to occupy different positions in space. 


The correspondence between the particles and the positions occupied by them at a given time is known as the body’s configuration. 

The displacement of a body is said to be rigid if the distances between all pairs of particles are the same in any two configurations. Bodies that can undergo only rigid displacements are called rigid bodies. Otherwise, the body is said to undergo deformation. 

Deformation is the change in the distances between material points, which leads to changes in shape and/or size of the body.

All real materials undergo some deformation under the influence of forces:
· deformation consisting only of volume change is known as dilation;

· deformation, involving change of shape at constant volume, is known as distortion. 

A material that can undergo only distortion and not dilatation is called incompressible; dense rubber comes fairly close to being such a material.

Schematic of various loading modes:
[image: image49.png]



A tensile force applied to a bar produces an elongation. 

The applied force/area is called the stress  σ = Fapplied/A. 
· When L = L0 the material is relaxed. 
· When there is a positive Fapplied, the material is under tension and L > L0. 
· If there is a negative Fapplied, the material is under compression and L < L0. 

To quantify the deformation of a solid body relative to some reference configuration, it is important to introduce the notion of strain.
Suppose that a force pulling on a bar of initial length  L0  stretches it by an amount 
ΔL = L ‒ L0. The elongation per unit length,  ΔL/L,  is independent of the length of the bar. This quantity is known as longitudinal strain and is usually denoted  ε, that is,

[image: image2.emf]
When the bar lengthens, the longitudinal strain is clearly positive, while when it shortens the same strain is negative. 

In practice, solids such as glass, hard plastic, or cast iron may sustain strains of the
order of a few tens of a percent before failure. Other metals and alloys, depending on their composition, can survive higher strains, up to a few percent. Rubber is a typical example of a material that may undergo finite strain (up to tens of percent or more) without breaking.

Any device in which the application of a load produces a conjugate displacement that increases with, (not always strictly proportional to), the load is called a spring: 

· if the load is a force and the displacement is a translation, then the spring is translational; 
· if it is torque and rotation, then the spring is rotational (a torsion spring). 
Typically springs are simple coil-like (spiral or helical) or bar-like objects, but it is often useful to think of complex assemblages as springs as well.

If the proportionality between load and displacement is exact at every stage of loading or unloading, then the spring is called linear or linearly elastic.

The ratio between load and displacement is called the spring constant, denoted simply  k. If  F  denotes the force and Δ the displacement of the spring, then 

F = kΔ .

The linear spring is the prototype of a material behavior in general bodies called linear elasticity. If a spring is not linear, then it may be nonlinearly elastic or inelastic.

The elasticity of the material is measured by the relation between stress and strain. Consider, for example, the axially loaded bar and assume that it is linearly elastic. The linear elasticity of the material in uniaxial loading is given by a linear relation between σ and ε,

σ = Eε .

This equation  represents the uniaxial Hooke’s law, and the coefficient E is known as the modulus of elasticity, or Young’s modulus of the material. The elastic modulus  is a measure of a material’s resistance to distortion by a tensile or compressive load.
 
Clearly, the larger the Young’s modulus in a linearly elastic material, the larger the stress that develops due to a given strain; the material is accordingly called stiffer. In the opposite case it is known as more compliant (or, somewhat imprecisely, as softer). 

As with the load-displacement relation in springs, most solids exhibit a linear uniaxial stress–strain relation only for a certain range of strains. This range depends on the material and may vary from approximately 0.1% for metals to more than 100% for rubber.

When shear forces are applied to a rectangular block, then the result will be a distortion. The applied load is parallel to the area supporting it (shear stress, τ ).
[image: image3.emf]            [image: image4.emf]
The deformation of the rectangular block, then, is evidenced by the fact that it is no longer rectangular, and the change  γ  in the included angle (from a right angle) may be used as the measure of shear strain. As in the case of longitudinal strain, we will generally assume that the shear strain  γ  is infinitesimal, that is,  |γ| << 1.
A relation   in the linearly elastic regime exists between the shear stress  τ  and the corresponding shear strain  γ, namely,

τ = Gγ ,

where  G is known as the shear modulus.

The bulk modulus (K, units of Pascals) quantifies the variation in volume (dV) of a 
material when the pressure is changed (dp). It is defined through the equation

[image: image5.emf]
The factor 1/V makes the bulk modulus independent of the volume of material considered and the negative sign allows positive compressibilities to describe the typical case where an increase in pressure causes a decrease in volume.
We know from experience that when a slender body is pulled along its axis, the material contracts in the directions perpendicular to this axis. 

If the longitudinal strain along the axis is tensile and equal to  εlong > 0, and if the contraction along transverse direction is represented by the lateral strain  εlat < 0, then 

[image: image6.emf]
is a material parameter known as the Poisson’s ratio. 

This number characterizes the severity of the lateral contraction experienced by the material when subjected to uniaxial elongation. Clearly, ν = 0 means no lateral contraction, while the higher the value of  ν, the larger the effected lateral contraction. Negative values of  ν  are rarely encountered; materials that have them are called auxetic.

For an isotropic elastic material the bulk modulus K, Young’s modulus E, shear modulus  G  and Poisson ratio  ν  are interrelated by two simple relationships, 

    [image: image7.emf]             [image: image8.emf]
Thus, if two of the characteristic elastic constants (from  E, K, v,  and  G) are known for an isotropic material, the other two can be calculated. The two constants,  E  and  G, are all that are needed to fully characterize the stiffness of an isotropic material (i.e., a material whose properties are the same in all directions).

Stress–strain diagram
To this point, we have limited the discussion to small strains << 1, such that all imposed deformations are completely recoverable. This is the elastic response region.

What happens at larger deformations, however, is dependent to some extent on the 
type of material under consideration. Beyond the elastic region, we enter a realm of nonrecoverable mechanical response termed permanent deformation.
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Figure a shows a realistic stress–strain relation:

· There is elastic Hookean behavior up to the point P, the proportional limit. The slope up
to this stress is constant, the Young’s modulus E . The higher the  E , the stiffer or the less compliant the material. 

· At higher stresses, the stress–strain relation is nonlinear. Up to the elastic limit, denoted
by EL, the object returns to its initial length when the stress is removed and there is no permanent deformation. In the elastic regime, the stretched bonds relax totally and there is no rearrangement of atoms after the load is released.

· For stresses beyond the elastic limit, there is permanent or plastic deformation and the
length and shape of the object are different after the stress is removed. 

The yield limit, denoted by YP, is at a stress somewhat higher than the elastic limit; 
above it much elongation can occur without much increase in the load. 

The yield point is usually estimated by the intersection of the stress–strain curve with a 
line parallel to the linear part of the stress–strain curve, but with an intercept set at a strain of  0.2% (or 0.002). The yield point occurs at the yield stress (or strength), YS.

· For tension, the material remains intact for larger stresses until the ultimate tensile stress
(UTS), which is also called the tensile strength (TS). Application of this stress leads to fracture at point F, which occurs at a strain called the ultimate strain or the ultimate percent elongation (UPE). 

· The final point F represents the rupture point or fracture point, of the material. The 
stress at point F is called the fracture strength, σf . It is simply the point at which the material physically separates into two or more pieces. 
Non-Hookean Materials

Many body materials cannot be modeled as Hookean springs, even for small stresses. This is typically true for many collagenous tissues, such as tendons, skin, mesentery (which are the folds attaching the intestines to the dorsal abdomen), the sclera, cartilage, and resting skeletal muscle. 

Experimentally, it is found for these materials that for larger strains

[image: image11.emf]
which is very different for materials such as bone for which  σ = E ε, and so  dσ/dε = Y  and is independent of stress.

This equation can be integrated after bringing the  σ  and  ε  terms to opposite sides of the equation

[image: image12.emf]
ln(σ + β) = αε + ln c,
where  c  is a constant. Exponentiating both sides gives

σ + β = c exp(αε)      and        σ = c exp(αε) – β.
Because  σ(ε = 0) = 0,  we see that  c = β   and so

σ = β (exp(αε) − 1).
At larger strains this exponential form may not work well. 

In the neo-Hookean regime, finite strain  ε general, 

ε general = ½ (λ2 − 1),

is defined, which for small deformations approaches the small-strain approximation, 
ε = λ−1.

Soft, neo-Hookean materials tend to follow a linear relationship between σ and εgeneral  (or  λ2), and not a linear or exponential relationship between  σ  and ε  (or  λ). Say that the stress–strain relation can be written as 

σ = E ε general.

Such non-Hookean stress–strain curves are typical for materials with fibers.

As mentioned earlier, there are large strains for small stresses where the tangled fibers are being aligned (in this toe regime), but much larger stresses are required to achieve much higher strains where the already-aligned fibers are being stretched.

Time-Dependent Deviations from Elastic Behavior: Viscoelasticity

For all the mechanical behaviors considered to this point, it has been assumed that when a stress is applied, the strain response is instantaneous. For many important biomaterials, including polymers and tissues, this is not a valid assumption.

We have never asked whether it makes a difference if this force were applied quickly or slowly. The responses of most materials inside or outside the body depend on these temporal dependences and on history, to some degree. This very important type of mechanical behavior is called viscoelasticity. 

Viscoelasticity is the response of a material to an applied stress that has both a viscous and an elastic component. 

In addition to a recoverable elastic response to an applied force, materials can undergo permanent deformation at high strains for a considerable time even though the load is constant. This continuous, time-dependent extension under constant load is called “creep”.

Similarly, if the material is extended in a tensile machine to a fixed elongation and held constant while the load is monitored, the load drops continuously with time. The continuous drop in load at constant extension is called stress relaxation. 

Both these responses are the result of viscous flow in the material. The mechanical analog of viscous flow is a dashpot or cylinder and piston. Any small force is enough to keep the piston moving. If the load is increased, the rate of displacement will increase.

Biological liquids and solids are usually viscoelastic, and this includes tendons, ligaments, cartilage, bone, and mucous.We will see how to model the viscoelasticity of body materials.

Perfectly harmonic elastic behavior is modeled by a spring, with

F(t) = kx(t),
where  F  is now the applied force and  x  is the response, which is the displacement of the end of the spring, k  is the spring constant. The force and displacement depend on the current state at the current time  t  and are independent of history.

Perfectly viscous behavior is modeled by a dashpot, with

F(t) = cv(t), 

where the response depends on the speed   v(t),  c  is a damping constant that describes damping due to viscosity. This characterization is often used to describe friction and other types of energy relaxation and dissipation.

An idealized dashpot is a piston moving in a cylinder, impeded by its movement in a viscous fluid. The displacement of the piston in the dashpot depends on its history! 

The damping constant c describes the effects of viscosity for this macroscopic model and relates the force in the dashpot model to the speed of the piston in the viscous medium. It is related to, but is different from, the coefficient of viscosity η, which connects shear stress and the shear rate in a viscous fluid.

We will combine these ideal springs and dashpots to arrive at models of realistic viscoelastic materials, and see how they respond to stimuli that vary with time. 

There are three interrelated manifestations of viscoelasticity:

1. Creep. When a stress (or force) is applied and maintained, there is a strain (or deformation) in the medium that increases with time.

[image: image13.emf]
2. Stress relaxation. When a strain (or deformation) is applied and maintained, a stress (or force) is felt by the medium immediately, and it then relaxes in time.

[image: image14.emf]
3. Hysteresis. When stresses are applied and then released (forces loaded and unloaded), the stress–strain cycles are not reversible. Some, but not all, of the work done in the loading processes is recoverable in unloading.
[image: image15.emf]     [image: image16.emf]
Hysteresis in bone and shifting in the stress–strain curve with repeated loading (to a, b, c) and unloading. The units of strain are microstrain. 

One feature of viscoelasticity is that materials behave differently over different time scales. When bone is strained slower, it develops less stress for the same applied strain.
Fluid Characteristics

A fluid is defined as a substance that deforms continuously under application of a shearing stress, regardless of how small the stress is. 

To study the behavior of fluids, it is useful to define a number of important fluid  properties, which include density, specific weight, specific gravity, and viscosity.

Density is defined as the mass per unit volume of a substance and is denoted by the Greek character ρ (rho). The SI units for  ρ  are kg/m3.

Specific weight is defined as the weight per unit volume of a substance. The SI units for specific weight are N/m3. 

Specific gravity s is the ratio of the weight of a liquid at a standard reference temperature to the weight of water. Specific gravity is a unitless parameter.

Density and specific weight are measures of the “heaviness” of a fluid, but two fluids with identical densities and specific weights can flow quite differently when subjected to the same forces. You might ask, “What is the additional property that determines the difference in behavior?” That property is viscosity.

Shear stress and rate of shearing strain
To understand viscosity, let us begin by imagining a fluid between two parallel plates which are infinite in width and length. 

[image: image17.emf]
The bottom plate A is a fixed plate. The upper plate B is a moveable plate, suspended on the fluid, above plate A, between the two plates. The vertical distance between the two plates is represented by  h. A constant force  F  is applied to the moveable plate B causing it to move along at a constant velocity VB  with respect to the fixed plate.
The shear stress  τ  in this case may be represented by

[image: image18.emf]
where  A - plate area.

The fluid that touches plate A has zero velocity. The fluid that touches plate B moves with the same velocity as that of plate B,  VB. That is, the molecules of the fluid adhere to the plate and do not slide along its surface. This is known as the  no-slip condition. 

Let the distance from the fixed plate to some arbitrary point above the plate be  y. 
The velocity  V of the fluid between the plates is a function of the distance above the fixed plate A:   V = V(y). Then, for small  dV  and  dy
dV/dy = dγ/dt.
The first derivative of the shearing strain with respect to time is known as shear rate (or the rate of shearing strain)  dγ/dt. The shear rate has the units of  1/s.
The shear stress  τ  on a fluid is related to the shear rate  dγ/dt. If a greater force is applied to the moving plate B, a relatively higher velocity, a higher shear rate, and a higher stress will result. 

A common way to visualize this relationship is by making a plot of shearing stress as a function of the shear rate. 

The material property that is represented by the slope of the stress–shear rate curve is known as viscosity μ (mu). Viscosity is also sometimes referred to by the name dynamic viscosity or absolute viscosity. The SI units for absolute viscosity are Pa∙s.

Kinematic viscosity is another fluid property that has been used to characterize flow. Kinematic viscosity ν can be defined by the equation:

[image: image19.emf]
The SI units for kinematic viscosity are m2/s.

For common fluids like oil, water, and air, viscosity does not vary with shear rate. Fluids with constant viscosity are known as Newtonian fluids. For Newtonian fluids, shear stress and shear rate are related by the following equation:

[image: image20.emf]
where  τ - shear stress,  μ – viscosity, γ - shear rate.

[image: image48.emf]When the shear rate increases above 100 s–1, blood behaves as a Newtonian fluid. 
A typical value for blood viscosity in humans is  3.5 mPa∙s, or  0.035 poise (P), or  3.5 cP (1Pa∙s  = 10P). 
For non-Newtonian fluids, shear stress and shear rate are not linearly related. For those fluids, viscosity can change as a function of the shear rate. 

Therefore, the slope of the shear stress/shear rate curve is not constant. However, we can still talk about viscosity if we define the apparent viscosity as the instantaneous slope of the shear stress/shear rate curve. 
Shear thickening fluids are non-Newtonian fluids whose apparent viscosity increases when the shear rate increases. Quicksand is a good example of a shear thickening fluid. If one tries to move slowly in quicksand, then the viscosity is low and the movement is relatively easy. If one tries to move quickly, then the viscosity increases and the movement is difficult.
Shear thinning fluids are non-Newtonian fluids whose apparent viscosity decreases as shear rate increases. Latex paint is a good example of a shear thinning fluid. It is a positive characteristic of the paint that the viscosity is low when one is painting, but that the viscosity becomes higher and the paint sticks to the surface better when no shearing force is present. At low shear rates, blood is also a shear thinning fluid.
A Bingham plastic is neither a fluid nor a solid. A Bingham plastic can withstand a finite shear load and flow like a fluid when that shear stress is exceeded. For Bingham plastic, shear stress and rate of shearing strain may be related by the Shvedov-Bingham equation:

τ = τ0 + μγ ,
where  τ0  is the yield stress.
Toothpaste and mayonnaise are examples of Bingham plastics. Blood is also a Bingham plastic and behaves as a solid at shear rates very close to zero. 

Another model, the Casson fluid (Casson, 1959), was proposed as a useful empirical model for blood

τ1∕2 = τ01∕2 + (μγ)1∕2 ,
where  τ0  is the blood yield stress.
Fluid dynamics
Fluid dynamics is dealing with liquids and gases in motion. It includs

· hydrodynamics - the study of liquids in motion

· aerodynamics - the study of gases in motion.
Fluid dynamics offers a systematic structure that embraces laws, derived from flow measurement, used to solve practical problems. 

All fluids are compressible to some extent, that is changes in pressure or temperature will result in changes in density. 

However, in many situations the changes in pressure are sufficiently small that the 
changes in density are negligible. In this case the flow can be modeled as an incompressible flow. 

When all the time derivatives of a flow field vanish, the flow is considered to be a
steady flow. Otherwise, it is called unsteady.


Laminar flow is highly organized flow along streamlines. As velocity increases, flow can become disorganized and chaotic with a random 3-D motion superimposed on the average flow velocity. This is known as turbulent flow.
To predict the transition between laminar and turbulent flows helps us the Reynolds number - a dimensionless parameter named after Reynolds. The number is defined as

[image: image21.emf]
where  ρ  - fluid density in kg/m3,  D - pipe diameter in m, μ - fluid viscosity in Pa∙s,  V -   average fluid velocity in m/s across the pipe cross section. 
· Laminar flow occurs in flow environments where  Re < 2000.

· Turbulent flow is present in circumstances under which  Re > 4000. 

· The range of  2000 < Re < 4000  is known as the transition range.

Physically, the Reynolds number represents the ratio of inertial forces to viscous forces.

The Reynolds number is also useful for predicting entrance length XE  for fully developed flow in pipe.  

The ratio of entrance length to pipe diameter for laminar pipe flow is given asngth
[image: image22.emf].
Consider the following example: If  Re = 300, then  XE = 18 D, and an entrance length equal to 18 pipe diameters is required for fully developed flow. 

In the human cardiovascular system, it is not common to see fully developed flow in arteries. Typically, the vessels continually branch, with the distance between branches not often being greater than 18 pipe diameters.

Although most blood flow in humans is laminar, having a Re of  300 or less, it is possible for turbulence to occur at very high flow rates in the descending aorta, for example, in highly conditioned athletes. Turbulence is also common in pathological conditions such as heart murmurs and stenotic heart valves.

Stenotic comes from the Greek word “stenos,” meaning narrow. Stenotic means narrowed, and a stenotic heart valve is one in which the narrowing of the valve is a result of the plaque formation on the valve.

Conservation of Mass

The continuity equation presents conservation of mass for cases where the mass inside the control volume does not increase or decrease, and it is written as

[image: image23.emf]
where  ρ1  - the fluid density at point 1,  A1 - the area across which the fluid enters the control volume,  V1 - the average velocity of the fluid across  A1. The variables  ρ2, A2,  and  V2  are density, area, and average velocity at point 2.

For incompressible flows under circumstances where the mass inside the control volume does not increase or decrease, the density of the fluid is constant (i.e.,  ρ1 = ρ2) and the continuity equation can be written in its more usual form:

[image: image24.emf]
where  Q  is the volume flow rate going into and out of the control volume.

Velocity as a function of radius

The solution of a fluid dynamics problem involves calculation of various properties of the fluid, such as velocity, pressure, density, as functions of space and time.
This law describes steady, laminar, incompressible, and viscous flow of a Newtonian fluid in a rigid, cylindrical tube of constant cross section. 

Consider a cylinder of fluid in a region of fully developed flow and sum the forces acting on that cylinder. Then, the velocity as a function of the radius r,1s

[image: image25.emf].
The fifth and final assumption for this development is that the flow is laminar and not turbulent. Otherwise, this parabolic velocity profile would not be a good representation of the velocity profile across the cross section.

Note that in Eq. (1.5),  dP/dx  must have a negative value; as pressure drops, that would give a positive velocity. This is consistent with the definition  of positive  x  as a value to the right, or downstream. 

Note also that the maximum velocity will occur on the centerline. By substituting 
r = 0 into Eq. (1.5), the maximum velocity can be obtained and furthermore, velocity as a function of radius may be written in a more convenient form:
[image: image26.emf],           [image: image27.emf]  .                         (1.6)

Flow rate

Now that the flow profile is known and a function giving velocity as a function of radius can be written, it is possible to integrate the velocity multiplied by the differential area to find the total flow passing through the tube. 

[image: image28.emf]
Consider a ring of fluid at some distance r from the centerline of the tube.
The differential flow  dQ  passing through this ring may be designated as

[image: image29.emf] 
To obtain the total flow passing through the cross section, integrate the differential flow in the limits from  r = 0  to  r = R, after substituting  V. Thus,

[image: image30.emf]. 
This yields the expression - Hagen-Poiseuille law:

[image: image31.emf].
The expression for the average velocity across the cross section is

[image: image32.emf].
Now it is possible to check assumption that the flow is laminar. To verify assumption, use  Vavg  to calculate the Reynolds number and check, to be sure, it is less than  2000. 
If the Reynolds number is greater than  2000,  the flow may be turbulent, and Hagen-Poiseuille law no longer applies.

Hagen-Poiseuille law can be successfully applied to blood flow in capillaries and veins, to air flow in lung alveoli, for the flow through a hypodermic needle.

Viscosity Measurement

There are several methods of measurement of viscosity. Each of the various methods has its own advantages and disadvantages. 
A fundamental method for measuring viscosity involves a viscometer made from concentric cylinders. 

[image: image33.emf] 
The fluid for which the viscosity is to be measured is placed between the two cylinders. The torque generated on the inner fixed cylinder by the outer rotating cylinder is determined by using a torque-measuring shaft. 
The force required to cause the cylinder to spin and the velocity at which it spins are also measured. 
Then the viscosity may be calculated in the following way:

1. The shear stress  τ  in the fluid is equal to the force  F  applied to the outer cylinder
divided by the surface area  A  of the internal cylinder, that is,

[image: image34.emf].

2. The shear rate for the fluid in the gap, between the cylinders, may also be calculated
from the velocity of the cylinder, V, and the gap width  h  as

[image: image35.emf].

3. From the shear stress and the shear rate, the viscosity  μ  and/or the kinematic 
viscosity ν may be obtained as

[image: image36.emf]      [image: image37.emf].

In 1851, Stokes derived an expression, known as Stokes' law, for the frictional force exerted on spherical objects in a continuous viscous fluid:

[image: image38.png]


,

where   Fd is the frictional force,  μ is the fluid's dynamic viscosity,  R is the radius of the spherical object, and  V is the particle's velocity. 

Stokes's law is the basis of the falling-sphere viscometer, in which the fluid is stationary in a vertical glass tube. A sphere of known size and density is allowed to descend through the liquid. When frictional force combined with the buoyant force exactly balance the gravitational force, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube.

The resulting terminal velocity is given by:

[image: image39.png]



where  g is the gravitational acceleration (m/s2),  ρp is the mass density of the particles (kg/m3), and ρf is the mass density of the fluid (kg/m3). 
Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid.

The technique is used industrial
ly to check the viscosity of fluids used in processes. 
Hemodynamics
The circulatory system is a connected series of tubes, which includes the heart, the arteries, the microcirculation, and the veins.

The heart is the driver of the circulatory system generating cardiac output (CO) by rhythmically contracting and relaxing. This creates changes in regional pressures, and, combined with a complex valvular system in the heart and the veins, ensures that the blood moves around the circulatory system in one direction.

Blood pressure pulse propagation with finite wave velocity in a blood vessel was considered by Moens and Korteweg (1878). They developed what is now known as the Moens-Korteweg formula for the pulse wave velocity:

[image: image40.emf],

where  E  is Young’s modulus of elasticity of the blood vessel, h  and  ri  are the wall thickness and inner radius of the uniform cylindrical vessel, respectively, and  ρ  is the density of blood. 

This suggests that blood pressure disturbances propagate in a wavelike manner from the heart toward the periphery of the circulation with a wave speed  c. 
Pulse propagation velocity is seen related to the mechanical and geometrical properties of the blood vessel. Wave velocity increased from about 5 m/s in the ascending aorta to about 10 m/s in the femoral artery, higher in the tibial artery.

Analog models of blood flow
The Windkessel (air-cell in German) was suggested by Otto Frank (1899) to represent the cardiovascular system. 

[image: image41.emf]
In this mechanical model, the aorta and large blood vessels are represented by a air-cell and the peripheral vessels are replaced by a rigid tube with a linear resistance: 

[image: image42.emf],    [image: image43.emf].

Accordingly, electrical scheme of this analog is
[image: image44.emf],

where V, P, and C - volume, pressure, and compliance of the air-cell and are linearly related, Gout - outflow of the air-cell, R - resistance of the rigid tube, Pvenous = 0.

Conservation of mass requires that

[image: image45.emf],
where  Qin is the inflow to the air-cell and represents the cardiac stroke. This governing equation can be solved analytically for a set of given boundary conditions.
In order to investigate complex blood flow phenomena, electrical analogs, which result in linear differential equations, were developed. In these models the vessel resistance to blood flow is represented by a resistor  R, the tube compliance by a capacitor  C, and blood inertia by an inductance L. 

Assuming that blood flow  Q  and pressure  P are analogous to the electrical current I and voltage  U, respectively, blood flow through a compliant vessel (e.g., artery or vein) may be represented by an electrical scheme:
[image: image46.emf]
For a system of vessels attached in series (or small units of a nonuniform vessel) a more complicated scheme, composed of a series of compartments whose characteristics are represented by  Ri, Ci, and  Li, is used.

[image: image47.emf]
This compartmental approach allowed for computer simulations of complex arterial circuits with clinical applications.
