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Electromagnetism
We have seen that a charged object produces an electric field E at all points in space. In a similar manner, a bar magnet is a source of a magnetic field B. This can be readily

demonstrated by moving a compass near the magnet. 
The bar magnet consists of two poles, which are designated as the north (N) and the south (S). Magnetic fields are strongest at the poles. The magnetic field lines leave from the north pole and enter the south pole. When holding two bar magnets close to each other, the like poles will repel each other while the opposite poles attract.
Unlike electric charges which can be isolated, the two magnetic poles always come in a pair. When you break the bar magnet, two new bar magnets are obtained, each with a north pole and a south pole. In other words, magnetic “monopoles” do not exist in isolation.
How do we define the magnetic field B? In the case of an electric field E , we have

already seen that the field is defined as the force per unit charge:

[image: image76.png]
However, due to the absence of magnetic monopoles, B must be defined in a different way.

The definition of a magnetic field

To define the magnetic field at a point, consider a particle of charge  q  and moving at a velocity v. Experimentally we have the following observations: 
· The magnitude of the magnetic force  FB  exerted on the charged particle is proportional

to both  v  and  q.

· The magnitude and direction of   FB  depends on v  and  B.

· The magnetic force   FB   vanishes when   v  is parallel to B. However, when  v  makes an

angleθwith  the direction of  B   FB  is perpendicular to the plane formed by  v  and  B,

and the magnitude of   FB   is proportional to sinθ.

· When the sign of the charge of the particle is switched from positive to negative (or

vice versa), the direction of the magnetic force also reverses.
The above observations can be summarized with the following equation:
[image: image2.emf].

The magnitude of  FB  is given by

FB = | q | vBsinθ.

The above expression can be taken as the working definition of the magnetic field at a

point in space. The SI unit of magnetic field is the tesla (T). Another commonly used non-SI unit for  B  is the gauss (G), where 1T =104 G .

Note that   FB  is always perpendicular to  v  and  B, and cannot change the particle’s speed  v  (and thus the kinetic energy). In other words,  magnetic force cannot speed up or slow down a charged particle. Consequently, FB  can do no work on the particle. The direction of  v, however, can be altered by the magnetic force.
Since electric current consists of a collection of charged particles in motion, when placed in a magnetic field, a current-carrying wire will also experience a magnetic force.
The magnetic force acting on the segment is

[image: image3.emf]
Thus, the total force is

[image: image4.emf],

where  a  and  b  represent the endpoints of the wire.

Consider a curved wire carrying a current  I  in a uniform magnetic field B,
The magnetic force on the wire is given by

[image: image5.emf]
where is the length vector  l  directed from  a  to  b. 
If the wire forms a closed loop of arbitrary shape, the set of differential length elements  ds  form a closed polygon, and their vector sum is zero, then the force on the loop becomes zero:
[image: image6.emf],   [image: image7.emf],    [image: image8.emf]
Torque on a current loop

What happens when we place a loop carrying a current  I  in a uniform magnetic field B.  In this case,  the net force on the loop is zero, but magnetic field  B  produce a torque which causes the loop to rotate. 

It is convenient to introduce the area vector  A = An, where  n  is a unit vector in the direction normal to the plane of the loop. The direction of the positive sense of  n is set by the conventional right-hand rule. 
Then the expression for torque can be written as

τ = IA×B.
Notice that the magnitude of the torque  τ  is at a maximum when B  is parallel to the plane

of the loop (or perpendicular to  A).

The quantity IA is called the magnetic dipole moment μ. The direction of  μ  is the same as the area vector  A (perpendicular to the plane of the loop)  and is determined by the right-hand rule. The SI unit for the magnetic dipole moment is ampere-meter2 (A⋅m2 ). 
Using the expression for  μ, the torque exerted on a current-carrying loop can be rewritten as

τ = μ×B.
This equation is analogous to  τ = p×E ,  the torque exerted on an electric dipole moment p  in the presence of an electric field E.  Recalling that the potential energy for an electric dipole is   U = − p⋅E, a similar form is expected for the magnetic case. 
The work done by an external agent to rotate the magnetic dipole from an angle θ0 to θ is given by

[image: image9.emf][image: image10.emf]
Once again, Wext = − W, where  W  is the work done by the magnetic field. 

Choosing  U0 = 0  at  θ 0  =π/ 2 , the dipole in the presence of an external field then has a potential energy of

U = −μBcos θ = − μ⋅B.
The configuration is at a stable equilibrium when  μ  is aligned parallel to  B,  making U  a minimum with  Umin = − μB. On the other hand, when  μ  and  B are anti-parallel,

Umax = + μB  is a maximum and the system is unstable.
The force experienced by a current-carrying loop (i.e., a magnetic dipole) placed in a uniform magnetic field is zero. What happens if the magnetic field is non-uniform? In this case, there will be a net force acting on the dipole
F = −∇U = −∇μ⋅B,

[image: image11.emf]
is the gradient operator.

Charged particles in a uniform magnetic field

If a particle of mass  m  moves in a circle of radius  r  at a constant speed  v, what acts on the particle is a radial force of magnitude  F = mv2 / r,  that always points toward the center and is perpendicular to the velocity of the particle.

The magnetic force   FB  always points in the direction perpendicular to the velocity v
of the charged particle and the magnetic field  B.  Since can do not work, it can only change the direction of  v  but not its magnitude.

If a charged particle moves through a uniform magnetic field with its initial velocity v at a right angle to  B  the magnetic force   FB  will play the role of a centripetal force and the charged particle will move in a circular path in a counterclockwise direction.  With

[image: image12.emf]
the radius  r  of the circle,  the period  T  (time required for one complete revolution) and the angular speed (cyclotron frequency)   ω of the particle can be obtained as 
[image: image13.emf] ,         [image: image14.emf],         [image: image15.emf].
If the initial velocity v of the charged particle has a component parallel to the magnetic field  B, instead of a circle, the resulting trajectory will be a helical path.
Velocity selector

In the presence of both electric field E and magnetic field B, the total force on a charged particle is

F = q (E + v×B ).

This is known as the Lorentz force. By combining the two fields, particles which move

with a certain velocity can be selected.


If the charged particles, electrons for example, pass through a region where there exists a downward uniform electric field, the electrons, being negatively charged, will be deflected upward. 

If in addition to the electric field, a magnetic field directed into the page is also applied, then the electrons will experience an additional downward magnetic force  −ev×B. 

When the two forces exactly cancel, the electrons will move in a straight path. 

The condition for the cancellation of the two forces is given by  eE  = evB,  which implies

v = E / B.   In other words, only those particles with speed   v = E / B  will be able to move in a straight line. 

Mass spectrometer

Various methods can be used to measure the mass of an atom. One possibility is through the use of a mass spectrometer. 

[image: image72.emf]The basic feature of a Bainbridge mass spectrometer is illustrated in figure. A particle carrying a charge   +q   is first sent through a velocity selector. 

The applied electric E and magnetic B fields satisfy the relation  E = vB  so that the trajectory of the particle is a straight line. 
Upon entering a region where a second magnetic field  B0  pointing into the page has been applied, the particle will move in a circular path with radius  r   and eventually strike the photographic plate. Thus, we have
[image: image16.emf],        [image: image17.emf],       [image: image18.emf].
Sources of magnetic fields

Biot-Savart law

Currents which arise due to the motion of charges are the source of magnetic fields.

When charges move in a conducting wire and produce a current  I, the magnetic field at any point  P due to the current can be calculated by adding up the magnetic field contributions dB  from small segments of the wire  ds.
[image: image73.emf]These segments can be thought of as a vector quantity having a magnitude of the length of the segment and pointing in the direction of the current flow. The infinitesimal current source can then be written as  Ids .

Let  r denote as the distance form the current source to the field point  P,  and the corresponding unit vector  r.  

The Biot-Savart law gives an expression for the magnetic field contribution  dB   from the current source  Id s,

[image: image19.emf],
where  μ0 is a constant called the permeability of free space:

μ0 = 4π×10-7 T⋅m/A.

Adding up these contributions to find the magnetic field at the point  P  requires integrating over the current source,

[image: image20.emf].
The integral is a vector integral, which means that the expression for B  is really three

integrals, one for each component of   B. The vector nature of this integral appears in the

cross product. Understanding how to evaluate this cross product and then perform the integral will be the key to learning how to use the Biot-Savart law.

The magnetic field due to a infinite straight wire at a distance  a  away is
[image: image21.emf]
Note that the system possesses cylindrical symmetry, and the magnetic field lines are circular. In fact, the direction of the magnetic field due to a long straight wire can be determined by the right-hand rule: 

If you direct your right thumb along the direction of the current  I  in the wire, then the fingers of your right hand curl in the direction of the magnetic field B. 

Magnetic field of a moving point charge

Suppose we have an infinitesimal current element in the form of a cylinder of crosssectional area  A  and length  ds  consisting of   n  charge carriers per unit volume, all moving at a common velocity  v  along the axis of the cylinder. 
Let   I  be the current in the element, which we define as the amount of charge passing through any cross-section of the cylinder per unit time. The current  I  can be written as

I = n Aq v.
The total number of charge carriers in the current element is simply  dN = n Ads, so the magnetic field  dB   due to the  dN  charge carriers is given by

[image: image22.emf] ,

where  r  is the distance between the charge and the field point  P  at which the field is being

measured, the unit vector   r ˆ = r / r   points from the source of the field (the charge) to  P.

The differential length vector  ds  is defined to be parallel to  v. 
In case of a single charge,   dN  = 1,  the equation becomes

[image: image23.emf].

Note, however, that the above equation strictly speaking only holds in the non-relativistic limit where   v << c, the speed of light, so that the effect of “retardation” can be ignored.

Force between two parallel wires

We have already seen that a current-carrying wire produces a magnetic field
[image: image24.emf]
Ampere’s law

We have seen that moving charges or currents are the source of magnetism. The magnetic field due to a infinite straight wire at a distance a away is
[image: image25.emf]
Note that the system possesses cylindrical symmetry, and the magnetic field lines are circular.

[image: image74.emf]Let us now divide a circular path of radius  r  into a large number of small length vectors Δs = Δsφˆ , that point along the tangential direction with magnitude Δs.

In the limit Δs →0 , we obtain

[image: image26.emf].
The result is obtained by choosing a closed path, or an “Amperian loop” that follows one particular magnetic field line. The generalization to any closed loop of arbitrary shape 

that involves many magnetic field lines is known as Ampere’s law:
[image: image27.emf].

Solenoid

A solenoid is a long coil of wire tightly wound in the helical form. 

For an “ideal” solenoid, which is infinitely long with turns tightly packed, the magnetic field inside the solenoid is uniform and parallel to the axis, and vanishes outside the solenoid.

The total current enclosed by the Amperian loop is   Ienc = NI , where  N  is the total number of turns. Applying Ampere’s law yields

[image: image28.emf],      [image: image29.emf],

where   n = N/l  represents the number of turns per unit length.

Faraday’s Law of Induction

The electric fields and magnetic fields considered up to now have been produced by

stationary charges and moving charges (currents), respectively. Imposing an electric field

on a conductor gives rise to a current which in turn generates a magnetic field. 

One could then inquire whether or not an electric field could be produced by a magnetic field. In 1831, Michael Faraday discovered that, by varying magnetic field with time, an electric field could be generated. The phenomenon is known as electromagnetic induction.
Consider a uniform magnetic field  B  passing through a surface  S.   Let the area vector be  A = An, where  A  is the area of the surface and  n  its unit normal. 

The magnetic flux  ΦB   through the surface is given by
ΦB = BA = BAcosθ
where  θ  is the angle between  B  and  n. If the field is non-uniform, then  ΦB  becomes

[image: image30.emf] 
The SI unit of magnetic flux is the weber (Wb).  1 Wb =1 T⋅m2.
Faraday’s law of induction may be stated as follows:

The induced emf  ε in a coil is proportional to the negative of the rate of change of

magnetic flux:

[image: image31.emf]
For a coil that consists of  N  loops, the total induced emf would be  N  times as large.

An emf  ε  may be induced in the following ways:

· by varying the magnitude of  B  with time, 

· by varying the magnitude of  A, i.e., the area enclosed by the loop with time,

· by varying the angle between  B  and the area vector  A  with time.

The direction of the induced current is determined by Lenz’s law:

The induced current  I  produces magnetic fields which tend to oppose the change in

magnetic flux  ΦB  that induces such currents.

We have seen that the electric potential difference between two points A  and  B  in an electric field  E can be written as

[image: image32.emf].
When the electric field is conservative, as is the case of electrostatics, the line integral of

E⋅d s  is path-independent, which implies

[image: image33.emf]
Faraday’s law shows that as magnetic flux changes with time, an induced current begins to flow. What causes the charges to move? It is the induced emf  ε  which is the work done per unit charge:   ε = W/q. 
However, since magnetic field can do not work, the work done on the mobile charges must be electric, and the electric field in this situation cannot be conservative because the line integral of a conservative field must vanish. Therefore, we conclude that there is a non-conservative electric field  Enc  associated with an induced emf:

[image: image34.emf].
Combining with Faraday’s law then yields

[image: image35.emf] .

The above expression implies that a changing magnetic flux will induce a nonconservative

electric field which can vary with time. 
It is important to distinguish between the induced, non-conservative electric field and the conservative electric field which arises from electric charges.

One of the most important applications of Faraday’s law of induction is to generators and motors. A generator converts mechanical energy into electric energy, while a motor

converts electrical energy into mechanical energy.

When a conducting loop moves through a magnetic field, current is induced as the result of changing magnetic flux. If a solid conductor were used instead of a loop, current can also be induced. 
The induced current appears to be circulating and is called an eddy current.
The induced eddy currents also generate a magnetic force that opposes the motion, making it more difficult to move the conductor across the magnetic field.

Since the conductor has non-vanishing resistance R , Joule heating causes a loss of power by an amount  P = ε 2/R . Therefore, by increasing the value of  R , power loss can be

reduced. One way to increase  R  is to laminate the conducting slab, or construct the slab by using gluing together thin strips that are insulated from one another. Another way is to make cuts in the slab, thereby disrupting the conducting path.
There are important applications of eddy currents. For example, the currents can be used to suppress unwanted mechanical oscillations. Another application is the magnetic

braking systems in high-speed transit cars.
Inductance 
Suppose two coils are placed near each other.

The first coil has  N1  turns and carries a current  I1 which gives rise to a magnetic field  B1
Since the two coils are close to each other, some of the magnetic field lines through coil 1

will also pass through coil 2. 
Let  Φ21 denote the magnetic flux through one turn of coil 2 due to  I1. Now, by varying  I1  with time, there will be an induced emf  ε21  associated with the changing magnetic flux  Φ21 in the second coil which has  N2  turns:

[image: image36.emf].
The time rate of change of magnetic flux 21 Φ in coil 2 is proportional to the time rate of

change of the current in coil 1:

[image: image37.emf],
where the proportionality constant   M21  is called the mutual inductance. It can also be

written as

[image: image38.emf] .

The SI unit for inductance is the henry (H): 1 henry = 1 H  = 1 T⋅m2/A.
The mutual inductance  M21  depends only on the geometrical properties of the two coils such as the number of turns and the radii of the two coils.

In a similar manner, suppose instead there is a current   I2   in the second coil and it is

varying with time. Then the induced emf  ε12   in coil 1 becomes

[image: image39.emf]
and a current  I1  is induced in coil 1.

This changing flux in coil 1 is proportional to the changing current in coil 2,

[image: image40.emf],

where the proportionality constant  M12  is another mutual inductance and can be written as

[image: image41.emf].

However, using the reciprocity theorem which combines Ampere’s law and the Biot-

Savart law, one may show that the constants are equal:

M12  = M21 ≡ M.
Consider again a coil consisting of  N  turns and carrying current  I  in the counterclockwise direction. If the current is steady, then the magnetic flux through the loop will remain constant. 

However, suppose the current I changes with time, then according to Faraday’s law, an induced emf  ε  will arise to oppose the change. 
The property of the loop in which its own magnetic field opposes any change in current is called “self-inductance” (symbol L),  and the emf generated is called the self-induced emf or back emf, which we denote as   εL.  
All current-carrying loops exhibit this property. In particular, an inductor is a circuit element which has a large selfinductance.

Mathematically, the self-induced emf  εL  can be written as

[image: image42.emf]
and is related to the self-inductance  L  by

[image: image43.emf] .

The two expressions can be combined to yield

[image: image44.emf] .

Physically, the inductance  L  is a measure of an inductor’s “resistance” to the change of

current; the larger the value of  L, the lower the rate of change of current.

Energy stored in magnetic fields

Since an inductor in a circuit serves to oppose any change in the current through it, work must be done by an external source such as a battery in order to establish a current in the inductor. 

From the work-energy theorem, we conclude that energy can be stored in an

inductor. The role played by an inductor in the magnetic case is analogous to that of a

capacitor in the electric case.

The power, or rate at which an external emf  εext works to overcome the self-induced emf  εL and pass current  I  in the inductor is 

[image: image45.emf] .

If only the external emf  εext  and the inductor are present, then  εext = − ε which implies

[image: image46.emf] .

If the current  I  is increasing with  dI/dt > 0, then  P > 0  which means that the
external source is doing positive work to transfer energy to the inductor. Thus, the internal energy of the inductor is increased. 

On the other hand, if the current is decreasing with  dI/dt < 0, we then have P < 0. In this case, the external source takes energy away from the inductor, causing its internal energy to go down. The total work done by the external source to increase the current form zero to   I
[image: image47.emf].

This is equal to the magnetic energy stored in the inductor:

[image: image48.emf].

The above expression is analogous to the electric energy stored in a capacitor:

[image: image49.emf].

We comment that from the energy perspective there is an important distinction between an inductor and a resistor. 
Whenever a current  I  goes through a resistor, energy flows into the resistor and dissipates in the form of heat regardless of whether  I  is steady or timedependent (recall that power dissipated in a resistor is  PR = IVR = I2R). 

On the other hand, energy flows into an ideal inductor only when the current is varying with  dI/dt > 0.  The energy is not dissipated but stored there; it is released later when the current decreases with  dI/dt < 0.  If the current that passes through the inductor is steady, then there is no change in energy since  PL = εLI = LI(dI/dt) = 0.
The displacement current

We learned that if a current-carrying wire possesses certain symmetry, the magnetic field can be obtained by using Ampere’s law: 

[image: image50.emf] 
The equation states that the line integral of a magnetic field around an arbitrary closed loop is equal to  μ0Ienc, where  Ienc  is the conduction current passing through the surface bound by the closed path. 
In addition, we also learned that, as a consequence of the Faraday’s law of induction, a changing magnetic field can produce an electric field, according to 

[image: image51.emf].
One might then wonder whether or not the converse could be true, namely, a changing electric field produces a magnetic field. Maxwell showed that the ambiguity can be resolved by adding to the right-hand side of the Ampere’s law an extra term 

[image: image52.emf],
which he called the “displacement current.” The term involves a change in electric flux. 

The generalized Ampere’s (or the Ampere-Maxwell) law now reads 

[image: image53.emf].
The origin of the displacement current can be understood as follows: 

Gauss’s law for electrostatics states that the electric flux through a closed surface is proportional to the charge enclosed, so 

[image: image54.emf],
where  A  is the area of the capacitor plates. 
We readily see that the  displacement current is related to the rate of increase of charge on the plate by 

[image: image55.emf].
However, the right-hand-side of the expression,  dQ/dt,  is simply equal to the conduction current,  I. 
Thus, we conclude that the conduction current  I  that passes through  S1 is precisely equal to the displacement current   Id   that passes through  S2, namely  
I = Id .
Gauss’s Law for Magnetism

Gauss’s law for electrostatics states that the electric flux through a closed surface is proportional to the charge enclosed. The electric field lines originate from the positive charge (source) and terminate at the negative charge (sink). 
Despite intense search effort, no isolated magnetic monopole has ever been observed. Hence, and Gauss’s law for magnetism becomes 

[image: image56.emf]
This implies that the number of magnetic field lines entering a closed surface is equal to the number of field lines leaving the surface. That is, there is no source or sink. In addition, the lines must be continuous with no starting or end points. 

Maxwell’s Equations

We now have 4 equations which form the foundation of electromagnetic phenomena:
[image: image57.emf]
Collectively they are known as Maxwell’s equations. 

Plane Electromagnetic Waves

An important consequence of Maxwell’s equations is the prediction of the existence of electromagnetic waves that travel with speed of light c.
A plane electromagnetic wave is one possible solution to the wave equations 

[image: image58.emf]
[image: image59.emf]
where the fields are sinusoidal, with amplitudes  E0  and  B0. 
[image: image75.emf]The angular wave number  k  and the angular frequency  ω  are related to the wavelength  λ  and the linear frequency  f   by

[image: image60.emf] , [image: image61.emf].
The characteristic behavior of the sinusoidal electromagnetic wave is illustrated in figure: 

We see that the E and  B  fields are always in phase (attaining maxima and minima at the same time.) 

Let us summarize the important features of electromagnetic waves: 

1. The wave is transverse since both  E and  B  fields are perpendicular to the direction of propagation, which points in the direction of the cross product  E×B. 

2. The E and  B  fields are perpendicular to each other. 

3. The ratio of the magnitudes and the amplitudes of the fields is 

[image: image62.emf].
4. The speed of propagation in vacuum is equal to the speed of light  c.

5. Electromagnetic waves obey the superposition principle. 

Poynting Vector

We had seen that electric and magnetic fields store energy. Thus, energy can also be carried by the electromagnetic waves which consist of both fields. 

The total energy per unit volume is given by sum of the energy densities associated with the electric and magnetic fields

[image: image63.emf].
The average total energy density then becomes 

[image: image64.emf][image: image65.emf]
In general, the rate of the energy flow per unit area may be described by the Poynting vector S, which is defined as 

[image: image66.emf]
 with S pointing in the direction of propagation. 

Thus, the intensity is related to the average energy density by 

[image: image67.emf].
Momentum and Radiation Pressure

The electromagnetic wave transports not only energy but also momentum, and hence can exert a radiation pressure on a surface due to the absorption and reflection of the momentum. 
Maxwell showed that for the complete absorption case, the average radiation pressure P (force per unit area) is given by
[image: image68.emf]
but, if the electromagnetic wave is completely reflected by a surface such as a mirror, the result becomes 

[image: image69.emf].
[image: image70.bmp][image: image71.emf]
