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ODESSA – 2023
Thermal radiation. Elements of quantum mechanics
Electromagnetic radiation is emitted from any substance at non-zero temperature. This is known as thermal radiation. 

To compare thermal radiation sources we have to make a brief introduction to units and terms for the measurement of electromagnetic radiation. 

Radiometric units

Radiometry is the measurement of optical radiation, defined as electromagnetic radiation within the frequency range from  3∙1011  to  3∙1016  hertz (Hz).  This range corresponds to wavelengths between  0.01  and  1000  micrometers and includes the regions commonly called ultraviolet, visible, and infrared. 

There are some background concepts and terminology that are needed before proceeding further. 

Projected area is defined as the rectilinear projection of a surface of any shape onto a plane normal to the unit vector. The differential form is dAproj = dA cosθ, where θ  is the angle between the local surface normal and the line of sight. 

The radian is the plane angle between two radii of a circle that cuts off on the circumference an arc equal in length to the radius. The abbreviation for the radian is rad. Since there are  2π rad  in a circle,  1 rad  =  180/π  degrees.  

The solid angle Ω  is the ratio of the spherical area  Aproj  to the square of the radius, r2:

d Ω = dAproj/r2.

1 steradian (sr) is the solid angle that, having its vertex in the center of a sphere, cuts off an area on the surface of the sphere equal to that of a square with sides of length equal to the radius of the sphere. 

For a right circular cone,  Ω = 2π(1 - cos θ),  where  θ  is the half-angle of the cone. Both plane angles and solid angles are dimensionless quantities. 

Radiometric units can be divided into two conceptual areas: 

· those having to do with power or energy, and 

· those that are geometric in nature. 

The terminology employed in radiometry and photometry consists of two parts: 

· an adjective distinguishing between a radiometric, photonic, or photometric entity, 

· a noun describing the underlying geometric or spatial concept. 

In some instances, the two parts are replaced by a single term (e.g., radiance). 

In the first category are: 

1. Radiant energy Q (joule) is energy travelling in the form of electromagnetic waves. 

2. Power or radiant flux  (watt), Φ = dQ/dt  is the time rate of transfer of radiant energy.  

3. Radiant flux density is the derivative of power with respect to area,   M = E = dΦ/dA:

· The radiant flux density emitted from a surface it is called radiant exitance M.  Radiant
exitance  is power per unit area leaving a surface into a hemisphere whose base is that surface. 

· The radiant flux density incident on a surface it is called radiant incidance or irradiance E.
Irradiance is power per unit area incident from all directions within a hemisphere onto a surface that coincides with the base of that hemisphere.  

4. Radiant intensity  I  (W/st) of a source is the derivative of power with respect to solid angle, 
I = dΦ/dΩ. The integral of radiant intensity over solid angle is power. 

5. Radiance  L  (W/m2st)  is the derivative of power with respect to solid angle and projected
area, L = d2Φ/dΩdAcos θ, where  θ  is the angle between the surface normal and the specified direction. The integral of radiance over area and solid angle is power. 

All of the radiometric terms have their photometric counterparts. They are related to how the human eye respond to optical radiation and is limited to the visible part of the spectrum.  Table list the radiometric and the corresponding photometric quantities. To distinguish radiometric and photometric symbols they are given subscripts e and v respectively (e.g. Le = radiance, Lv=luminance).
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The radiometric quantities refer to total radiation of all wavelengths. 
A spectral version for each may be defined by adding the subscript  λ  (e.g. Meλ or simply Mλ) where for example a spectral flux Φλdλ represents the flux in a wavelength interval between λ and λ + dλ, with units  W nm−1  or  W μm−1. 

Blackbody radiator

It is difficult if not impossible to make a surface that is completely absorbing. If the surface is not completely absorbing, we define the absorbance αλ, which is the fraction of light absorbed at wavelength λ. 

If the light all passes through some transparent material or is completely reflected, then αλ = 0; if it is all absorbed, αλ = 1. An object for which   αλ = 1  for all wavelengths is called a blackbody; an object for which αλ < 1  and const for all wavelengths is called a gray body.
The absorption can be improved by making a cavity. Photons entering the hole in the cavity bounce from the walls many times before chancing to pass out through the hole again, and they therefore have a greater chance of being absorbed. Such a hole in a cavity is the best approximation to a blackbody. 

When a blackbody is heated, the light given off  has a continuous spectrum. The amount of energy coming out of a blackbody cavity depends only on the temperature of the walls and not on the nature of the surfaces. 
The spectrum of power per unit area emitted by a completely black surface in the wavelength interval  (λ , λ + dλ)  is  Wλ(λ, T)dλ.   A universal function  Wλ(λ, T) is called the blackbody radiation function. It has units of   W m−3. 
[image: image7.emf]The value of  Wλ  is plotted for several different temperatures here. As the black surface or cavity walls become hotter, the spectrum shifts toward shorter wavelengths. 
The visible region of the spectrum is marked on the abscissa; even at 1,600 K when the radiating surface appears white, most of the energy is radiated in the infrared. 

The blackbody is an idealization. In nature most radiators are selective radiators, i.e. the spectral distribution of the emitted flux is not the same as for a blackbody. 
The relative emissive power of a radiating surface (emissivity) is defined as   ε = M/W ,  where   M  is the radiant exitance of the source of interest and  W  is the radiant exitance of a blackbody at the same temperature,  ε  is a number between  0  and  1  and is in general both wavelength and temperature dependent. 

Much work was done on the properties of blackbody thermal or cavity radiation in the 
late 1800s and early 1900s. We will not discuss the history of these developments, but will simply summarize the properties of the blackbody radiation function that are important to us. 

Thermal radiation’s laws
We now wish to discuss how well particular surfaces of a cavity will absorb or emit electromagnetic radiation of a particular frequency or wavelength. We therefore make the following additional definitions: 

· reflectance  ρ  is a measure of the ability of a surface to reflect light or other electromagnetic radiation, equal to the ratio of the reflected flux  Φr  to the incident flux Φi:  ρ = dΦr /dΦi ; 

· transmittance  τ  is a measure of the ability of anything to transmit radiation, equal to the ratio of the transmitted flux  Φt  to the incident flux Φi:  τ = dΦt /dΦi ; 
· absorptance  α  is a measure of the ability of an object to absorb radiation, equal to the ratio of the absorbed radiant flux  Φa  to the incident flux Φi:  α = dΦr /dΦi.  

Consider two slabs of different materials A and B, and that each is of semi-infinite thickness and infinite area, forming a cavity:  

A
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B

Assume that A is a black body and that B is a material with emissivity ε,  reflectance ρ and absorptance α,  and that the materials and cavity are in thermal equilibrium.  
Because of the last assumption, the flux onto B must equal the flux leaving B toward A.  

W = ρW + M,

where  W  and  M  are the radiant exitance of   A  (the blackbody) and  B  respectively and 

ε = M/W = 1 − ρ.

Because of conservation of energy, the reflectance  ρ, transmittance  τ  and absorbance α at a surface add up to unity: 

ρ + τ + α = 1.

Since we have assumed semi-infinitely thick materials, the transmittance  τ = 0  and we have 

ε = M/W = 1 − ρ = α.

This equation holds for any given spectral interval which gives the more general form 

Mλ = αλ Wλ.
This equation expresses Kirchhoff’s law, which states that the ratio   Mλ/αλ  is a universal function of   λ  and  T. Therefore, if you fix   λ  and  T, the ratio  Mλ/αλ  is fixed and hence   Mλ  ~  αλ  . In other words ‘good absorbers at one wavelength are good emitters at the same wavelength’. 

A perfect blackbody is an object which is defined to have  αλ  = 1  for all  λ. Kirchhoff’s law tells us that for this maximum value of   α,  a blackbody is the best possible emitter.  
The spectral radiant exitance  Wλ(λ, T)  from a blackbody is given by Planck’s formula 
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where  Planck’s constant  h = 6.63∙10−34 J s; velocity of light  c = 2.998∙ 108 ms−1; Boltzmann’s constant k = 1.38∙10−23 JK−1.  

By differentiating equation we get the wavelength  λmax for which  Wλ(λ, T)  is peaked 

λmax T = 2.9mm K .

This relation is called Wien’s displacement law. We see that at higher temperatures the peak occurs at shorter wavelengths.

By integrating over all wavelengths we get the Stefan–Boltzmann law 
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The Stefan– Boltzmann constant, σSB = 5.67∙10-8 W m-2 K-4 
Particle-wave duality

Both the electromagnetic radiation (photons) and particles exhibit a particle-wave duality and both may be characterized with wavelength  λ  and momentum  p  related to one another through the following expression

λ = h/p ,


where h is the Planck's constant.

In relation to particles, it is referred to as the de Broglie relationship and  λ  is referred to as the de Broglie wavelength of a particle in honour of  Louis de Broglie who in 1924 postulated the existence of matter waves.

The wave nature of the electron was confirmed experimentally by Clinton J. Davisson and Lester H. Germer in 1927 who set out to measure the energy of electrons scattered from a nickel target. 
Davisson and Germer discovered that for certain combinations of electron kinetic energies  EK  and scattering angles  θ  the intensity of scattered electrons exhibited maxima, similarly to the scattering of  X-rays from a crystal with a crystalline plane separation  d  that follows the Bragg relationship with  m  an integer

2d sin θ = m λ .
Davisson and Germer determined the wavelength  λ  of electrons from the measured scattering angle θ   at which the electron intensity exhibited a maximum. The measured  λ  agreed well with wavelengths calculated from the de Broglie relationship.

The experimentally determined particle-wave duality suggests that both the particle model and the wave model can be used for particles as well as for photon radiation. However, for a given measurement only one of the two models will apply. 
For example, in the case of photon radiation, the photoeffect is explained with the particle model, while the diffraction of  X-rays is explained with the wave model. 
On the other hand, the charge-to-mass ratio  e/me  of the electron implies a particle phenomenon, while the electron diffraction suggests wave-like behavior. 

Introduction to quantum mechanics

Associated with any particle is a matter wave. This matter wave is referred to as the particle's wave function  Ψ(x,y,z,t)  for three-dimensional problems and contains all the relevant information about the particle. 
Quantum mechanics or wave mechanics, developed by Erwin Schrodinger and Werner Heisenberg between 1925 and 1929, is a branch of physics that deals with the properties of wave functions as they pertain to particles, nuclei, atoms, molecules and solids.

The main characteristics of quantum mechanics are as follows:

· The theory has general application to microscopic systems and includes Newton's theory of macroscopic particle motion as a special case in the macroscopic limit.

· It specifies the laws of wave motion that the particles of any microscopic system follow.

· It provides techniques for obtaining the wave functions for a given microscopic system.
· It offers means to extract information about a particle from its wave function.

· The main attributes of wave functions  Ψ(x,y,z,t)    are:

· Wave function is generally but not necessarily complex and contain the imaginary number i.

· Wave function cannot be measured with any physical instrument.

· Wave function contains physical information about the particle they describe.

The information on a particle can be extracted from a complex wave function Ψ(x,y,z,t)  through a postulate proposed by Max Born in 1926 relating the probability density  dP(x,y,z,t)/dV  with the wave function  Ψ(x,y,z,t)   as follows:

dP(x,y,z,t)/dV  =  Ψ*(x,y,z,t)•Ψ(x,y,z,t) =  |Ψ(x,y,z,t)|2,


where  Ψ*  is the complex conjugate of the wave function  Ψ.

The probability density dP(x,y,z,t)/dV  is real, non-negative and measurable. In wave mechanics, the total probability of finding the particle somewhere is equal to 1, if the particle exists. We can use this fact to define the following normalization condition
∫ dP(x,y,z,t)  = ∫ |Ψ(x,y,z,t)|2dV = 1 ,
where the volume integral extends over all space and represents a certainty that the particle will be found (unit probability).

Quantum-mechanical wave equation

The waves associated with matter are represented by the wave function  Ψ(x,y,z,t)  that is a solution to a quantum mechanical wave equation. 

In most physical situations the potential energy  U(x,y,z,t)  only depends on  x,y,z   and the so-called time-independent Schrodinger wave equation for the given  U(x,y,z)  is
− ħ2/(2m) (∂2Ψ/∂x2 + ∂2Ψ/∂y2 + ∂2Ψ/∂z2 ) + U(x,y,z)Ψ = EΨ.
The essential problem in quantum mechanics is to find solutions to this equation for a given potential energy U(x,y,z). The solutions are given in the form of:

· wave functions Ψ(x,y,z)  referred to as eigenfunctions.
· allowed energy states  E  referred to as eigenvalues.
Many mathematical solutions are available as solutions to wave equations. However, to serve as a physical solution, an eigenfunction  Ψ(x,y,z)  and its derivatives must be  finite,  single valued, continuous and square integrable, meaning
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Corresponding to each eigenvalue  En  is an eigenfunction  Ψ(x,y,z)  that is a solution to the time-independent Schrodinger equation for the potential  U(x,y,z). 

Uncertainty Principle

In classical mechanics the act of measuring the value of a measurable quantity does not disturb the quantity; therefore, the position and momentum of an object can be determined simultaneously and precisely. 
However, when the size of the object diminishes and approaches the dimensions of microscopic particles, it becomes impossible to determine with great precision at the same instant both the position and momentum of particles nor is it possible to determine the energy of a system in an arbitrarily short time interval.

Werner Heisenberg in 1927 proposed the uncertainty principle that limits the attainable precision of measurement results.

The momentum-position uncertainty principle deals with the simultaneous measurement of the position  z  and momentum  pz  of a particle and limits the precision of  z 
 and  pz  measurement to the following 
∆z∆pz > ħ/2 ,

where  ∆z  is the uncertainty on  z  and  ∆pz   is the uncertainty on  pz. 
There are no limits on the precision of individual  z  and  pz   measurements. However, in a simultaneous measurement of   z  and  pz   the product of the two uncertainties cannot be smaller than  ħ/2, where  ħ = h/(2π)  is the reduced Planck's constant. If  z  is known precisely  (∆z = 0), then we cannot know  pz,  since  ∆pz = ∞. The reverse is also true. 

The energy-time uncertainty principle deals with the measurement of the energy  E  of a system and the time interval  ∆t  required for the measurement. Similarly to the  (∆z,∆pz)  situation, Heisenberg uncertainty principle states the following
∆t∆E > ħ/2,
where  ∆E  is the uncertainty in the energy determination and  ∆t  is the time interval taken for the measurement.

Classical mechanics sets no limits on the precision of measurement results and allows a deterministic prediction of the behavior of a system in the future. 
Quantum mechanics, on the other hand, limits the precision of measurement results and thus allows only probabilistic predictions of the system's behavior in the future.

Complementarity Principle

In 1928 Niels Bohr proposed the principle of complementarity postulating that any atomic scale phenomenon for its full description requires that both its wave and particle properties be considered and determined, since the wave and particle models are complementary. 

Bohr's principle of complementarity asserts that atomic size processes can manifest themselves either as waves or as particles during a given experiment, but never as both during the same experiment. 
However, to understand and describe fully an atomic scale physical process the two types of properties must be investigated with different experiments, since both properties complement rather than exclude each other.

This is in contrast to macroscopic scale phenomena where particle and wave characteristics (e.g., billiard ball vs. water wave) of the same macroscopic phenomenon are mutually incompatible rather than complementary.

The most important example of this particle-wave duality is the photon, a mass-less particle characterized with energy, frequency and wavelength. However, in certain experiments such as in photoeffect the photon behaves like a particle; in other experiments such as double-slit diffraction it behaves like a wave.

Another example of the particle-wave duality are the wave-like properties of electrons, heavy charged particles and neutrons that manifest themselves through diffraction experiments.

Geiger—Marsden Experiment and Rutherford Atomic Model

Hans Geiger and Ernest Marsden in 1909 carried out an experiment studying the scattering of  5.5  MeV  α-particles on a thin gold foil with a thickness of the order of  10-6 m. The  α -particles were obtained from radon Rn222, a natural  α -particle emitter. 

Geiger and Marsden found that more than  99%  of the  α -particles incident on the gold foil were scattered at angles less than 3°. However, one in  ~ 104  α -particles was scattered with a scattering angle  φ > 90°  .

It was Ernest Rutherford, who concluded that the peculiar results of the Geiger-Marsden experiment allow to propose a atomic model in which:

· essentially all mass and positive charge of the atom are concentrated in the nucleus the size of which is of the order of 10-15 m;

· negatively charged electrons revolve about the nucleus and are distributed in a spherical cloud on the periphery of the Rutherford atom with a radius of the order of  10-10 m. 

Bohr model of the hydrogen atom

Niels Bohr in 1913 combined Rutherford's concept of the nuclear atom with Planck's idea of the quantized nature of the radiative process and developed an atomic model that successfully deals with one-electron structures such as the hydrogen atom, singly ionized helium, doubly ionized lithium, etc. 

The model, known as the Bohr model of the atom, is based on four postulates that combine classical mechanics with the concept of angular momentum quantization. 
The four Bohr postulates are stated as follows:
1. Electrons revolve about the Rutherford nucleus in well-defined, allowed orbits. The
Coulomb force of attraction   between the electrons and the positively charged nucleus is balanced by the centripetal force 

Ze2/(4πε0r2) = mv2/r,
where  Z  is the number of protons in the nucleus (atomic number);  r  the radius of the orbit or shell;  m  the electron mass,  v  the velocity of the electron in the orbit and  ε0  the permittivity of free space.

2. While in orbit, the electron does not lose any energy despite being constantly accelerated.

3. The angular momentum  of the electron in an allowed orbit is quantized and given as   

mvr = nħ,
where   n  is an integer referred to as the principal quantum number. 

4. An atom emits radiation when an electron makes a transition from an initial allowed 
orbit with quantum number  ni  to a final allowed orbit with quantum number  nf   for  ni  > nf.

From first and third Bohr postulate we get the following relationship for  rn, the radius of the  n-th allowed Bohr orbit  and  vn,  the velocity of the electron in the  n-th allowed
rn  =  ε0h2n2/πZe2m = a0n2/Z,         vn = Ze2/2ε0hn,
where  a0  is called the Bohr radius of a one electron atom (a0 = 0.529 Ǻ).

The total energy  En  of the electron when in one of the allowed orbits with radius  rn  is 

En =  — me4Z2/(8ε02h2n2) = — Z2ER/n2,
where  ER  =  —13.6 eV called the Rydberg energy. 

Electron in  n = 1  state is said to be in the ground state; an electron in a state with  
n  > 1  is said to be in an excited state.

Energy must be supplied to an electron in the ground state of a hydrogen atom to move it to an excited state. An electron cannot remain in an excited state; rather it will move to a lower level shell and the transition energy will be emitted in the form of a photon.

The energy  hυ  of a photon emitted as a result of an electronic transition from an initial allowed orbit with  ni  to a final allowed orbit with  nf,  where  ni > nf,  is given by

hυ = Ei — Ef  = me4Z2/(8ε02h2) (1/nf 2 — 1/ni2) = Z2ER (1/nf 2 — 1/ni2). 
Photons emitted by excited atoms are concentrated at a number of discrete wavelengths (lines). 

According to the Bohr atomic model, each of the  5 known series of the hydrogen spectrum arises from a family of electronic transitions that all end at the same final state  nf.  
At the time when Bohr proposed his model the Balmer  (nf = 2) and Pashen (nf = 3) series were known but Lyman  (nf = 1), Brackett  (nf = 4), and Pfund  (nf = 5) series were not known; however, the three series were discovered after Bohr predicted them with his model.

The Bohr atomic model suffers two severe limitations:

· it does not predict the relative intensities of the photon emission in orbital transitions

· it does not work quantitatively for multi-electron atoms.
Quantum numbers

Bohr's atomic theory predicts quantized energy levels for the one-electron hydrogen atom that depend only on  n, the principal quantum number.

In contrast, the solution of the Schrodinger's equation for the hydrogen atom gives three quantum numbers for the hydrogen atom:  n,  l,  and  ml,  where:

n  is the principal quantum number with allowed values  n = 1, 2, 3 ... ; 

l  is the orbital quantum number giving the orbital angular momentum  L = ħ√l(l + 1)   and has the following allowed values  l = 0, 1, 2, ... n — 1;
ml   is referred to as the magnetic quantum number giving the  z  component of the orbital angular momentum  Lz = mlħ  with allowed values: ml  = —l, —l + 1,  ..., 0, …, l —1, l.

Experiments by Otto Stern and Walter Gerlach in 1921 have shown that the electron, in addition to its orbital angular momentum  L,  possesses an intrinsic angular momentum. 

This intrinsic angular momentum is referred to as the  spin  S  and is specified by two
quantum numbers:   s = ½   and   ms   that can take two values  —½, +½. 
The electron spin  S  and  the   z  component of the spin  Sz   are given as

S = ħ√s(s + 1) = ħ√3/2  ,             Sz = msħ.

The orbital and spin angular momenta of an electron actually interact with one another. This interaction is referred to as the  spin-orbit coupling  and results in a  total angular momentum  J  that is the vector sum of the orbital and intrinsic spin components,  J = L+S. 

The total angular momentum  J   has the value   J = ħ√j(j + 1)   where the possible values of the quantum number  j  are:   |l - s|,  l - s +1, ...  l + s,  with   s = ½    for all electrons.

The   z component of the total angular momentum   Jz   has the value   Jz = mjħ,  where the possible values of  mj   are:    —j, —j + 1, ..., 0, …,  j — 1, j.
The state of an atomic electron is thus specified with a set of four quantum numbers:

· n,  L,  ml,  ms  when there is no spin-orbit interaction or

· n,  L,  j,  mj  when there is spin-orbit interaction.

Correspondence principle

Niels Bohr postulated that the smallest change in angular momentum   L   of a particle is equal to  ħ  . This is seemingly in drastic disagreement with classical mechanics where the angular momentum as well as the energy of a particle behave as continuous functions. 
In macroscopic systems the angular momentum quantization is not noticed because  ħ  represents such a small fraction of the angular momentum; on the atomic scale, however,  ħ  may be of the order of the angular momentum making the  ħ  quantization very noticeable.

The correspondence principle proposed by Niels Bohr in 1923 states :

for large values of the principal quantum number  n  the quantum and classical theories must merge and agree. 
In general, the correspondence principle stipulates that the predictions of the quantum theory for any physical system must match the predictions of the corresponding classical theory in the limit where the quantum numbers specifying the state of the system are very large. 

Multi-electron atoms

A multielectron atom of atomic number  Z  contains a nucleus of charge  +Ze  surrounded by  Z  electrons, each of charge   —e   and revolving in an orbit about the nucleus.
The kinematics of electron motion and energy levels of electrons in a multi-electron atom are governed by

· kinetic energy of orbital electron,

· attractive Coulomb force between the electron and the nucleus,

· repulsive Coulomb force exerted on the electron by the other  Z — 1  atomic electrons,

· weak interactions involving orbital and spin angular momenta of orbital electrons,

· minor interactions between the electron and nuclear angular momenta,

· relativistic effects and the effect of the finite nuclear size.

Wolfgang Pauli in 1925 eloquently answered the question on the values of quantum numbers assigned to individual electrons in a multi-electron atom. 

Pauli's exclusion principle states: 
"In a multielectron atom there can never be more than one electron in the same quantum state".

According to Pauli's exclusion principle in a multi-electron atom no two electrons can have all four quantum numbers identical.

The energy and position of each electron in a multi-electron atom are most affected by the principal quantum number  n. The electrons that have the same value of  n  form a shell.

Within a shell, the energy and position of each electron are affected by the value of the 
orbital angular momentum quantum number  l.  The electrons that have the same value of  l  in a
shell form a sub-shell.

The specification of quantum numbers  n  and  l  for each electron in a multi-electron atom is referred to as the electronic configuration of the atom.

Pauli's exclusion principle confirms the shell structure of the atom as well as the sub-shell structure of individual atomic shells:

· number of electrons in sub-shells with quantum numbers  n,  l,  ml: 2(2l +1)
· number of electrons in sub-shells with quantum numbers  n,  l,  j:     2j + 1
n-1

· number of electrons in a shell:
               2∑(2l +1) = 2n2.
l=o

The main characteristics of atomic shells and sub-shells are given in table. 

	Principal quantum number  n
	1
	2
	3
	4
	5

	Spectroscopic notation
	K
	L
	M
	N
	O

	Maximum number of electrons
	2
	8
	18
	32
	5

	Main characteristics of atomic subshells

	Orbital quantum number l
	0
	1
	2
	3
	4

	Spectroscopic notation
	s
	p
	d
	f
	g

	Maximum number of electrons
	2
	6
	10
	14
	18


